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Abstract
Although laziness enables beautiful code, it comes with non-trivial
performance costs. The ghc compiler for Haskell has optimizations
to reduce those costs, but the optimizations are not sufficient. As a
result, Haskell also provides a variety of strictness annotations so
that users can indicate program points where an expression should
be evaluated eagerly. Skillful use of those annotations is a black
art, known only to expert Haskell programmers. In this paper, we
introduce AUTOBAHN, a tool that uses genetic algorithms to auto-
matically infer strictness annotations that improve program perfor-
mance on representative inputs. Users examine the suggested an-
notations for soundness and can instruct AUTOBAHN to automati-
cally produce modified sources. Experiments on 60 programs from
the NoFib benchmark suite show that AUTOBAHN can infer anno-
tation sets that improve runtime performance by a geometric mean
of 8.5%. Case studies show AUTOBAHN can reduce the live size of
a GC simulator by 99% and infer application-specific annotations
for Aeson library code. A 10-fold cross-validation study shows the
AUTOBAHN-optimized GC simulator generally outperforms a ver-
sion optimized by an expert.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques—Program editors; D.3.4
[Programming Langauges]: Processors—Code generation, opti-
mization, profiling

Keywords Haskell, laziness, strictness annotations, genetic algo-
rithms

1. Introduction
Meet Pat and Chris. They are intermediate Haskell programmers
who coded their most recent project in Haskell. They are excited
about how easy it was to write and confident that their code is cor-
rect, but they are dismayed to learn that the program is too slow.
They chose algorithms and data structures that should lead to an
efficient implementation, and so they are at a loss as to why the
program is inefficient. A little web research suggests the likely cul-
prit (too much laziness) and a possible solution (adding strictness
annotations). Unfortunately, figuring out where in a program to add
strictness annotations is a black art, well understood only by expert
Haskell programmers. For a while they thought they could solve

the problem by relying on Haskell libraries that experts had already
optimized. But then they realized that approach could not work be-
cause the necessary annotations for the library code depend upon
how the library functions are used, something the library writer
cannot know in advance.

At this point, Pat and Chris are faced with unpalatable choices:
spend a long time learning how to use strictness annotations, find an
expert to help them, rewrite the code in a different language, or cope
with bad performance. In this paper, we describe AUTOBAHN1,
a tool we have built to help Haskell programmers like Pat and
Chris by dynamically inferring strictness annotations that improve
program performance. Pat and Chris still need to examine the
suggested annotations and decide whether to apply them, but they
don’t have to produce the annotations themselves.

Stepping back, lazy functional programming languages such as
Haskell offer the promise of only evaluating the expressions needed
to compute the answer. Laziness makes for beautiful programs be-
cause it supports modularity [15]. It enables useful programming
idioms and it lets users define first-class control constructs. Lazi-
ness is implemented using thunks. When a function is called, the
system passes a heap-allocated thunk storing the unevaluated ar-
gument. If in the execution of the function it is determined that
the value of the argument is actually needed, the thunk is forced,
which causes the argument to be evaluated to weak head normal
form. The thunk is then overwritten with the resulting value so fu-
ture references don’t need to re-evaluate it [23].

Lazy evaluation does not always improve performance. Allo-
cating large numbers of thunks that eventually need to be forced
can cause significant performance slow-downs in both time and
space [9, 22, 24]. The ghc Haskell compiler uses a backward static
analysis [31] to find program points where thunk creation can be
avoided. Although this analysis provides consistent performance
improvements, programs can still be too slow because the compiler
must be conservative in its optimizations to preserve termination
behavior on all possible inputs.

To address this deficiency, Haskell provides strictness annota-
tions such as bang patterns [2] that allow programmers to instruct
the compiler not to create a thunk but rather to evaluate the corre-
sponding expression immediately.2 Judicious use of strictness an-
notations can improve program performance in terms of speed and
memory usage by significant amounts [20, Chapter 25].

Unfortunately, as Pat and Chris discovered, non-expert pro-
grammers often struggle with how to add strictness annotations
to improve performance. As Mitchell points out in his 2013 ACM
Queue article [17]

1 Available at https://genetic-strictness.github.io/Autobahn/
2 Available via the -XBangPatterns language pragma.
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Compilers for lazy functional languages have been dealing
with space leaks for more than 30 years and have developed
a number of strategies to help. There have been changes
to compilation techniques and modifications to the garbage
collector and profilers to pinpoint space leaks when they do
occur. ... Despite all the improvements, space leaks remain a
thorn in the side of lazy evaluation, producing a significant
disadvantage to weigh against the benefits.

A Stack Overflow post asking for help identifying a memory leak
in a small program [19] illustrates the challenges. The program ma-
nipulates a list stored in an MVar, repeatedly reading it, transform-
ing it, and storing it back into the MVar. A simplified version of the
program (with the necessary annotation to eliminate the leak) is:

upgraderThread :: MVar [Int] -> Int -> IO ()
upgraderThread chanMVar 0 = do

ns <- readMVar chanMVar
print ns

upgraderThread chanMVar n = do job
where

job = do
vlist <- takeMVar chanMVar
let !reslist = transform vlist
putMVar chanMVar reslist
upgraderThread chanMVar (n - 1)

The function transform fully evaluates vlist in the process
of transforming it. The original program suffered from a space
leak caused by lazily evaluating the result of the transformation.
One might imagine that annotating chanMVar with a bang in the
case where n is not zero would fix the leak because chanMVar
accumulates thunks at every recursive call. However, the “usual
cure” [26] of annotating accumulating parameters does not work
here because chanMVar is only reduced to weak head normal
form (its outermost constructor), not fully evaluated. To completely
eliminate the space leak, we need to instead add a bang before
reslist (as underlined in the code fragment above) to trigger the
call to transform. As program size grows, it is hard to spot the
bindings where thunks build up.

In this paper, we explore using genetic algorithms to automati-
cally infer strictness annotations, specifically bang patterns. In our
approach, Pat and Chris write their Haskell program without wor-
rying about strictness annotations. Once they are happy with the
correctness of their code, they run AUTOBAHN, supplying the pro-
gram and representative data. AUTOBAHN uses a genetic algorithm
to search through the space of all possible bang patterns to find
candidate annotations that reduce the value of a fitness function se-
lected to improve program performance. AUTOBAHN can start with
a program that already contains bang patterns or one that does not.
It has the power to both add and remove annotations. AUTOBAHN
returns a list of annotation sets, ranked by a measurement of how
much each annotation set improved performance. Pat and Chris ex-
amine the proposed alternatives for soundness on relevant program
inputs and decide whether to have AUTOBAHN produce modified
sources corresponding to one of the generated annotation sets.

The genetic algorithm iteratively considers a collection of can-
didate annotations. In each round, it preserves those annotations
that demonstrate the best performance on the supplied data. Since
AUTOBAHN starts with the original program, AUTOBAHN is guar-
anteed to only suggest alternative annotations that actually improve
the original performance on the supplied dataset.

As with any dynamic approach, it is important that the train-
ing data be representative of the data of interest. In the worst case,
AUTOBAHN could introduce annotations that cause the program to
fail to terminate when given new input. For this reason, AUTO-
BAHN supplies a list of alternatives and asks the user to choose
from among them. Pat and Chris may decide to adopt an annota-

tion set that could lead to non-termination because they know that
the triggering input values will never occur in practice. We leave
to future work the challenge of helping Pat and Chris reason about
the soundness of the inferred annotations for their inputs of inter-
est. The ability to make potentially unsound annotations is one rea-
son why strictness annotations can lead to better performance than
ghc’s optimizer; the compiler must be sound.

AUTOBAHN users can decide how much of the program’s
source AUTOBAHN should infer annotations for. At one extreme,
AUTOBAHN can analyze a single annotation point; at the other,
it can analyze the entire source code for a program, including li-
braries. This expansive mode can be useful because in general,
the appropriate strictness annotations for libraries is a property of
how they are used, information not available to the library writer.
Note, though, that AUTOBAHN will not duplicate code to allow for
different annotations in different contexts, an important limitation
particularly for larger programs.

The contributions of this paper are the following:

• We show how to use genetic algorithms to automatically infer
strictness annotations that enable non-expert Haskell program-
mers to improve the performance of their programs on a variety
of different performance criteria: total runtime, garbage collec-
tion time, and live size (aka, peak allocation).

• We demonstrate the effectiveness of this approach on 60 pro-
grams from the NoFib [21] benchmark suite, showing geomet-
ric mean improvements of 8.5%, 18%, and 7.2%, and maximum
improvements of 89%, 98%, and 99.3% on the total runtime,
garbage collection time, and live size performance criteria, re-
spectively.

• We use AUTOBAHN in a case study to optimize the performance
of a garbage collector simulator gcSimulator [27]. The anno-
tations inferred on a small training set result in performance
improvements on larger data sets: 23.6% decrease in running
time and a reduction in live size to under 1% of the unoptimized
program on the full dataset.

• We show in a second case study that AUTOBAHN can infer
application-specific annotations for Aeson [5] library code to
optimize driver programs validate and convert that require
different annotations to produce optimal behavior.

• We conducted 10-fold cross-validation studies for gcSimulator
and convert, showing that the inferred annotations are stable
across different data sets. For gcSimulator, the study also
shows that the inferred annotations generally outperform the
annotations added by hand by the original author.

2. Genetic Algorithms
Our problem of finding a set of annotations to maximize program
performance is a specific instance of a general search problem. We
can cast the general problem as follows. Consider a function F
that takes an argument x and returns some value F(x). We wish to
find an argument that maximizes the value F(x). If the number of
possible values for x is large, we cannot use exhaustive algorithms
to search for x. Instead, we must turn to heuristic searches.

A genetic algorithm [11] uses ideas from natural selection to
guide a heuristic search for a value of x that maximizes function
F . Each possible value of x is encoded as a sequence of genes
that collectively form a chromosome. Function F is called a fitness
function because it measures how fit each chromosome is to sur-
vive. The algorithm runs for a number of rounds, each of which
is called a generation. Each round starts with a group of chromo-
somes called a population. The algorithm computes the fitness of
each chromosome in the current population by calculating the cor-
responding value of F . It forms the population for the next round
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by promoting the fittest individuals of the current population and
adding the offspring of the current generation. The algorithm com-
putes the offspring by randomly changing the genes in some mem-
bers of the current population (mutation) and by splicing together
the chromosomes of others (crossover). The result of the search is
the “fittest” member of the population in the final generation.

Figure 1 shows pseudo-code for the genetic algorithm we use,
while Table 1 lists the various parameters with which it can be con-
figured. We use italics to indicate the names of parameters. The al-
gorithm creates an initial population using a seed chromosome. The
diversityRate parameter determines how much the chromosomes
generated for the initial population differ from the seed. When con-
structing a new chromosome for the initial population, each gene
in the seed is mutated with probability diversityRate.

For each of numGenerations generations, the algorithm evolves
a population of populationSize chromosomes. For each generation,
the algorithm uses the fitness function to score each individual. To
form the next generation, it first selects the archiveSize fittest chro-
mosomes from the current generation in an operation called archiv-
ing. It then uses mutateRate to calculate the number of chromo-
somes for the next generation that should be created via mutation
(numMutants). To generate each such chromosome, it randomly
picks a chromosome from the previous generation and modifies
each of its genes with probability mutateProb. Next, the algorithm
computes the number of chromosomes for the next generation that
should be created via crossover (numChildren). To generate each
such chromosome, it randomly picks two chromosomes from the
previous generation and splices them together. The algorithm re-
turns either the highest scoring chromosome in the final generation
(as shown in Figure 1) or a list of all the chromosomes in the final
population along with their fitness scores.

Genetic algorithms differ from other heuristic search algo-
rithms in the randomness introduced when creating each gener-
ation. Specifically, mutation and crossover introduce chromosomes
that archiving alone would not. This randomness helps prevent
the algorithm from getting stuck at local maxima. High values for
mutateProb and diversityRate cause bigger chromosomal changes.
Bigger changes lead to faster convergence, but also increase the
odds of missing a good “nearby” chromosome.

3. AUTOBAHN
3.1 Genes and Chromosomes
What is AUTOBAHN’s notion of a gene? Conceptually, a gene is
a program source location where we may insert a bang pattern. A
gene is on (represented by the bit 1) if the corresponding source
location has a bang; it is off (bit 0) otherwise. Although syntac-
tically legal, it is not sensible to put multiple bangs on the same
pattern, so we disallow this possibility. For a given program p, we
construct the related program p’ that is just like p except p’ has no
bang annotations. We call p’ the bare version of p. A gene for p is
any program location in p’ where a bang pattern is legal. We use
haskell-src-exts [4] to identify the appropriate locations.

Because we disallow multiple bangs on the same pattern, any
Haskell program has a fixed number of candidate bang pattern
annotations and so a fixed number of genes. Consequently, we
use a fixed-length bit vector to encode the space of all possible
annotations. A chromosome is a particular value for the bit vector.
For example, consider the following code:

module ABitLazy where
foo !x ~y !z = x + z -- ‘~’ denotes absent bang

This program has three genes, one for each parameter. The chromo-
some for the current annotations is the bit vector ‘101’, indicating
the expressions bound to x and z should be evaluated eagerly, but
y should be evaluated lazily. In some cases, adding or removing a

bang at a program position does not have any effect. For example,
a bang outside a tuple is superfluous because pattern matching the
tuple forces its evaluation. We are exploring how to identify these
program positions and remove them from the chromosome.

How many genes? Another key question is deciding the ex-
tent of the program to allow AUTOBAHN to consider. The approach
works at the level of source code, so it cannot explore changing
annotations within pre-compiled portions of the program. For the
portion for which source code is available however, there is com-
plete flexibility. Conceptually, the tool can consider any subset of
the program source: everything from the entire program down to a
single bang pattern location. For simplicity, we have restricted this
flexibility to the level of individual source files. AUTOBAHN users
specify which source files they want AUTOBAHN to consider. The
possible bang pattern locations in these files form the chromosome
that AUTOBAHN will optimize over. By specifying which source
code files to consider, AUTOBAHN users can limit the size of the
search space by not including libraries or their own source code
whose performance is irrelevant.

This approach means that for any libraries for which source
code is available, AUTOBAHN can search for application-specific
annotations. Currently, authors of high-performance libraries pro-
vide multiple versions of some functions to accommodate different
use patterns. For example, the Aeson [5] library for parsing JSON
provides strict and lazy versions of the key parsing function. To the
extent that AUTOBAHN is successful, Pat and Chris won’t have to
worry about choosing the appropriate versions of such functions.
Note, however, that AUTOBAHN will not copy library functions to
infer different annotations for copies called in different contexts.

3.2 Fitness Functions
Genetic algorithms can search for chromosomes that optimize any
measurable fitness function. Our approach for measuring the fitness
of a particular chromosome is to run the corresponding program on
user-supplied training data and measure the resulting performance
using statistics provided by the ghc runtime. Given a chromosome
and the associated Haskell sources, we produce the program to
profile by parsing the sources using the haskell-src-exts li-
brary [4], modifying the resulting data structure representation of
the program to reflect the bang pattern annotations described by the
chromosome, and then pretty-printing the modified sources so they
can be compiled, linked with binaries, and profiled with ghc.

There are a variety of performance metrics that programmers
like Pat and Chris might care about. AUTOBAHN provides three
different fitness functions that users can choose between. Each of
these functions works by parsing the output produced by ghc when
invoked with the +RTS -t command-line option [10]. The first fit-
ness function uses the total running time as the measure, rewarding
faster genes. The second uses the reported garbage collection (GC)
time: shorter GC times mean less GC work, which in turn implies
less allocation; a reduction in GC time is also directly reflected in
the total runtime of the program. The third uses the peak allocation
statistic, corresponding to the live size of the program.

When evaluating programs to measure the fitness of the cor-
responding chromosome, we must keep in mind that introduc-
ing bang patterns may cause non-termination. Intuitively, chromo-
somes that cause non-termination are not fit and should be given
poor fitness scores so that they die off. To implement this intuition,
we timeout program runs that take longer than twice the running
time of the original program. We allow programs that are slightly
slower than the original because sometimes such programs lead to
overall improvements when additional annotations are added in fu-
ture generations. We assign very low scores to programs that trigger
the timeout and to programs that terminate by throwing an excep-
tion, ensuring they die out.
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Term Type Description
diversityRate Float Probability with which each gene in seed is mutated to form initial population
numGenerations Int Number of generations to run algorithm
populationSize Int Number of chromosomes in each population
archiveSize Int Number of chromosomes to promote to next generation unchanged
mutateRate Float Percentage of the new population generated by mutation
mutateProb Float Probability with which each gene in a chromosome selected for mutation is changed
crossRate Float Percentage of the new population generated by crossover

Table 1. Genetic algorithm parameters

procedure GENETICALG(diversityRate, numGenerations, populationSize, archiveSize, mutateRate, mutateProb, crossRate)
population←GENPOPULATION(seed, diversityRate, populationSize) . Generate initial population from seed using diversityRate
scores←MAP(fitness, population) . Calculate fitness of individuals

for i = 1→ numGenerations do
fittest←SELECT(archiveSize, scores, population) . Get the archiveSize fittest chromosomes
numMutants← (populationSize - archiveSize) * mutateRate . Calculate number of mutants from mutateRate
mutants←MUTATE(population, numMutants, mutateProb) . Mutate numMutants chromosomes
numChildren← (populationSize - archiveSize) * crossRate . Calculate number of children from crossRate
children←CROSSOVER(population, numChildren) . Use crossRate to generate numChildren chromosomes
population← fittest ++ mutants ++ children . Ready the population for the next generation
scores←MAP(fitness, population) . Calculate fitness of each new individual

end for
best← SELECTBEST(scores, population)
return best

end procedure

Figure 1. Pseudo-code of a genetic algorithm to maximize the value of fitness function starting from initial chromosome seed.

We also assign fatally low scores to programs with invalid bang
pattern annotations. AUTOBAHN generates such programs because
the haskell-src-exts library permits bang pattern annotations
in two kinds of places that trigger ghc errors. An example of the
first kind comes from the NoFib [21] benchmark:

copy (!n) x = take (max 0 n) xs
where !(xs) = x : xs

The parser in ghc flags this use of a bang pattern on a recursively
used variable as an error. The second kind of error arises when
variables within typeclass instance declarations are annotated with
bangs. For instance,

instance Monad Foo where
!c1 >>= f = ...

raises a parse error on the bind operator. In both cases, ghc returns
an error exit code. AUTOBAHN catches the error and assigns a low
score to kill off the chromosome.

Another challenge for AUTOBAHN is when the original program
takes a long time to run on the training data. A fundamental limit
on the number of chromosomes AUTOBAHN can explore is how
long it takes to run the original program on the training data.
Shorter running times enable searching a larger portion of the
annotation space. When a profiling iteration takes so long to finish
that AUTOBAHN determines it cannot run 10 generations with a
population size of 10 chromosomes (its defaults), AUTOBAHN asks
the user to supply a smaller set of representative training data.

3.3 Algorithm Parameters
As discussed in Section 2 and shown in Table 1, genetic algorithms
can be configured in a number of ways. Choosing a good set
of parameters can be confusing, and so AUTOBAHN attempts to
determine reasonable default values, asking users to supply only
the amount of time they are willing to let AUTOBAHN run and

a measure of their confidence that a good set of annotations is
“close” to the annotations in the program they supply. The goal
is to maximize the possibility of performance improvement while
guaranteeing the optimizer runs for a reasonable time.

We use the supplied confidence level to set the diversityRate
parameter. If the users believe only slight changes to the original
bang patterns are necessary, we assign a low value to diversityRate
so that AUTOBAHN will focus on chromosomes that resemble the
original annotation set. If the users are less confident, we use a
higher value to explore the search space more widely.

We use the total time that the users are willing to run AU-
TOBAHN to calculate the highest possible values for the param-
eters numGenerations and populationSize, allowing us to explore
as large a portion of the annotation space as possible in the allo-
cated time. Since both parameters prolong AUTOBAHN’s runtime,
we find the “golden ratio” of the two parameters based on their ef-
fect on the possibility of discovering better annotation sets. In our
experience, a 4/3 ratio of numGenerations/populationSize works
well as default. This ratio is somewhat unconventional for genetic
algorithms, where the value of numGenerations is usually on the
order of twenty times larger than populationSize [16]. We empiri-
cally adjusted these parameters to guarantee an affordable running
time and a reasonable populationSize.

We use simple default values for four parameters: archiveSize
(7), mutateRate (0.2), mutateProb (0.2), and crossRate (0.8). We
chose these values because we found they worked well in practice.

In addition to the generic genetic algorithm parameters de-
scribed in the previous section, we have an additional parameter
numFitnessRuns that arises because our fitness function runs the
program to measure its performance. To ensure the profiling in-
formation is accurate, we run each program on the training data
numFitnessRuns times. We calculate an appropriate value for this
parameter by iteratively profiling the unannotated program until the
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{ diversityRate = 0.4 -- 1st generation diversity
, numGenerations = 20 -- Evolve for 20 generations
, populationSize = 15 -- 15 chromosomes/generation
, archiveSize = 7 -- 7 best chromosomes survive
, mutateRate = 0.2 -- 20% from mutation
, mutateProb = 0.2 -- 20% chance a bang flips
, crossRate = 0.8 -- 80% from crossover
, numFitnessRuns = 4 -- Profiling iterations
}

Figure 2. Sample inferred configuration

mean of the measured performance changes by less than 5%. We
use that number of iterations as the value for numFitnessRuns. The
record in Figure 2 shows a sample inferred configuration. We allow
users to override default values if they wish.

3.4 The First Generation
After generating the algorithm parameters, AUTOBAHN populates
the first generation. It seeds this generation with the chromosome
that encodes the bang patterns in the user-provided Haskell source
program. Starting from this seed chromosome, AUTOBAHN uses
the diversityRate parameter to generate the required number of
chromosomes to comprise a full generation (specified by popula-
tionSize). To produce each new chromosome, AUTOBAHN consid-
ers each gene in seed and flips the value of that gene with probabil-
ity diversityRate. Note that this process can both add and remove
bang patterns.

3.5 Producing New Generations
We use the Haskell genetic algorithm library GA [14] to pro-
duce each successive generation, passing it our mutation and
crossover functions, which we explain in turn.

Mutation. For each generation, the GA library calls our func-
tion mutation mutateRate ∗ populationSize times, each time pass-
ing in a randomly chosen chromosome c from the current popu-
lation. Intuitively, our mutation function independently flips each
gene in c whenever a randomly chosen floating point number be-
tween 0 and 1 exceeds the mutateProb threshold. The function
makes use of three parameters. The first is a parameter p that repre-
sents the probability that a given gene should be flipped; we set this
value according to the mutateProb parameter. Next, we use a seed
parameter to generate randomness. Finally, we have a parameter c
that is the chromosome selected for mutation. The function works
by calculating the number of genes in the chromosome (len), gen-
erating a random sequence (fs) of len floats, converting fs into
a sequence (bs) of bits where a given bit is set whenever the float
has a value smaller than p. Finally, we compute and return the new
chromosome c’ by xor-ing c with the bit sequence.

Crossover. For each generation, the GA library calls our
crossover function crossRate ∗ populationSize times, each time
passing in a pair of randomly chosen chromosomes c1 and c2
from the current population. We chose to have our crossover func-
tion implement the Uniform Distribution [35] strategy to ensure
that each gene has an equal opportunity to change through evolu-
tion. Intuitively, the crossover function randomly picks half of the
genes for the new chromosome from the corresponding positions in
one parent, and the rest from the other parent. This strategy makes
stronger genes more likely to survive: when a newly added anno-
tation improves performance, its improvement is likely to persist
regardless of other annotations. The function makes use of three
parameters. As with mutation, we use a seed parameter to gener-
ate randomness. Next, we use two parameters, c1 and c2, as the
chromosomes that have been selected for crossover. Intuitively, our
crossover function first generates a random sieve (s) whose length

Complete program sources
Cabal file with compilation instructions
Subset of program sources to analyze
Level of confidence on current annotations
Metric to be optimized
Representative input data
A cap on the amount of time available to search

Figure 3. Inputs a user supplies to AUTOBAHN

(len) matches that of a chromosome and that statistically will have
half of its bits on (map (< 0.5) fs). For all the on-bits we se-
lect the genes from one parent (c1’) using a bitwise-and operation
(.&.). We use the off-bits to select the remaining genes from the
other parent (c2’). We then use a bitwise-or operation (.|.) to
generate a new chromosome with roughly half of its genes from
each parent.

3.6 Determining a Winner
When AUTOBAHN has evolved the population through the num-
ber of generations viable in the user-specified time window, AU-
TOBAHN returns a list of the surviving chromosomes ranked by
their fitness score. AUTOBAHN provides a web interface that allows
users to see the program with the suggested annotations. Upon re-
quest, AUTOBAHN will produce copies of the program sources with
the annotations specified by a particular chromosome.

3.7 Putting it All Together
To summarize, we discuss how people like Pat and Chris use AU-
TOBAHN. First, they provide the inputs specified in Figure 3. AU-
TOBAHN uses this information to compute parameter values for the
genetic algorithm (unless Pat and Chris have provided explicit pa-
rameter values instead). AUTOBAHN populates the first generation
from the chromosome corresponding to the source program sup-
plied by the users. It uses the Haskell GA library for genetic algo-
rithms to produce each successive generation, during which bang
patterns can be both added and removed. At the end, it generates a
web page showing a list of candidate program annotations ranked
by the fitness score. If directed to do so by the users, AUTOBAHN
will produce a new version of the input sources that match any of
the chromosomes that survived to the final round.

3.8 Discussion
Haskell has four major kinds of strictness annotations: seq [30],
deepseq [7], and related functions; strict application ($!) [32];
strict data type declarations [33]; and bang patterns [2]. Currently,
AUTOBAHN searches only for bang patterns. We chose not to
search for places to insert seq or related functions because the
search space is too large. We are currently exploring using AUTO-
BAHN to insert strict applications and strict datatype annotations.

4. Soundness
One challenge with introducing bang patterns is the possibility of
changing the termination behavior of the program being optimized.
For example, consider the following silly program:

let x = length [1..] in 10

This program terminates because there is no need to evaluate the
expression bound to x. If, however, we annotate x with a bang
pattern, we force the evaluation of length [1..], causing the
program to run forever.

The ghc compiler uses a conservative strictness analyzer [31]
to ensure that it won’t introduce non-termination when it decides
to eagerly evaluate an expression. As with all static analysis, this

118



analyzer is necessarily conservative and so ghc will consequently
miss some optimization opportunities.

AUTOBAHN does not limit its search to annotations that do
not change termination behavior. It will kill off any chromosomes
whose corresponding program runs more than twice as long as the
original program on the training data. As a result, AUTOBAHN
will rule out any annotations that introduce non-termination on
the training data. It is, however, possible to have a program that
terminates on all training data but that fails to terminate on other
input, even if the training data causes all control flow paths to be
executed. Consider, for example, the following program:

{- Note that fact diverges on negative numbers. -}
fact 0 = 1
fact z = z * fact (z - 1)

g x b = if b then x else 5
print (g (fact u) b)

Assume that b is almost always true, variable u is read from input,
and the result of the call to g is needed (suggested by the call to
print). The program will terminate for all values of u as long as b
is false. Now, suppose the training data only has positive values
for u. In this scenario, AUTOBAHN might well decide to add a
bang pattern on the x variable in the definition of g because most
of the time b is true and eagerly evaluating the call to fact is a
performance win. Note that every line of code in the program is
executed during the training, even though the user only passes in
positive values for u. Now suppose b is true and the user passes in
a negative value for u after AUTOBAHN has introduced the bang
pattern. At this point, the program will diverge when the original
would have terminated.

This scenario leads us to not automatically apply the best per-
forming annotation set that AUTOBAHN finds: this annotation set
might not preserve termination. It is up to AUTOBAHN users to
verify that the suggested annotations lead to appropriate termina-
tion behavior. For the same reason, it is important that AUTOBAHN
users supply representative training data. If negative values for u are
legal inputs, then the training data should include examples of this
form. Note that users might pick an inferred annotation set even
if it introduces the possibility of non-termination. In the example
above, the users might know that the system will never in fact pass
in a negative number and so introducing the bang pattern is fine.

We note that verifying soundness may not be easy. Even with
this limitation, however, AUTOBAHN can help programmers like
Pat and Chris, who currently have to first produce an annotation set
and then reason about its soundness. With AUTOBAHN, the prob-
lem is reduced to reasoning about the soundness of annotation sets
that achieve the desired performance. To help with this task, we are
currently developing an additional tool to explore the termination
behavior of annotation sets.

5. Evaluation
We evaluate AUTOBAHN in a number of ways:

1. By running it on four small programs for which we can perform
an exhaustive search, showing that AUTOBAHN computes the
optimal annotation set.

2. By running it on 60 programs taken from the NoFib [21] bench-
mark suite and measuring the performance gains when opti-
mized for total runtime, garbage collection time, and live size.

3. By comparing the NoFib performance produced by AUTO-
BAHN with that produced by Strict Haskell [34] via the pragmas
-XStrict and -XStrictData that force eager evaluation.

4. By running it on a garbage collection simulator whose poor
performance was the original motivation for AUTOBAHN and
showing that (1) performance gains inferred from a small train-
ing set carry over to larger datasets and (2) AUTOBAHN anno-
tations compare favorably to those introduced by hand.

5. By running it on two different driver programs that use the Ae-
son [5] library for parsing JSON and showing that AUTOBAHN
infers application-specific annotations for the Aeson code that
improve the overall performance of the programs.

6. By measuring the stability of AUTOBAHN’s optimization with
10-fold cross-validation on the garbage collection simulator and
one of the Aeson driver programs.

7. By measuring the time it takes AUTOBAHN to infer the annota-
tions for the NoFib benchmark and for the two case studies.

Experimental Setup. All programs were compiled and run on
a computer with four 16-core AMD Opteron 6380 processors
clocked at 2.5 GHz and 128 GB of RAM. We compiled AU-
TOBAHN itself with ghc version 7.8.4 with the -O2 flag. We
compiled the benchmarks with ghc version 7.10.3 with -O2
and -XBangPatterns along with NoFib’s default flags. We add
-funbox-strict-fields for those benchmarks that already have
strict fields to ensure they still compile. Profiling was not en-
abled. To obtain more accurate information about live sizes, we
forced ghc to perform frequent garbage collections via the flags
+RTS -h -i0.01. For the Strict Haskell comparison, we used ghc
version 8.0.1 because the relevant pragmas were not present in
7.10.3. We ran each benchmark 4 times and report our results using
NoFib’s geometric-mean reporting convention for uniformity with
other studies.

5.1 Small Programs: A Sanity Check
First, we ran AUTOBAHN on a set of four small programs for which
we were able to exhaustively explore all possible bang pattern an-
notations to calculate the “right answer.” For all four programs, AU-
TOBAHN infers the bang patterns that produce the best performance
on all of our performance criteria. In the following, we briefly de-
scribe the programs and their strictness properties.

The fib function below uses accumulating parameters (a, b1,
and b2) to calculate the nth Fibonacci number. The function has
six genes, one before each parameter to fib (including 0 and _).
Adding bangs to either a or b2 completely eliminates the thunk
leak. Other bangs have no effect.

fib :: Int -> Integer -> Integer -> Integer
fib 0 _ b1 = b1
fib n !a !b2 = fib (n - 1) b2 (a + b2)

The second program, taken from Edward Yang’s blog on thunk
leaks [8] needs three bangs to achieve top performance. Each of
the three bangs individually improves performance slightly, but all
three together produce the best performance.

f [] c = c
f (x : xs) !c = f xs (uncurry (tick x) c)
tick x !c0 !c1

| even x = (c0, c1 + 1)
| otherwise = (c0 + 1, c1)

The third program is the upgraderThread example discussed
in Section 1. The fourth program, unlike the previous three, in-
troduces the possibility of non-termination. In particular, adding
strictness before variable as causes the program to diverge. The
best annotation set is to only annotate variable a.

u = 0 : go (head u) (tail u)
go !a as = a + 1 : go (head as) (tail as)
main = do print $ u !! 1999999
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5.2 NoFib Benchmarks
We ran AUTOBAHN on 60 benchmarks from the NoFib benchmark
suite. We optimized each program three separate times: once on
runtime, once on GC time, and finally on live size. These bench-
marks comprise all of the NoFib programs that are can be com-
piled by ghc version 7.10.3 and can be processed without errors
by the haskell-src-exts parser library [4] version 1.17.1. The
smallest of these benchmark programs (rfib) has 5 genes, while
the largest (anna) has 7709. Table 2 lists the programs, giving the
number of lines of code, the number of program files, and the num-
ber of genes in each.

Figure 4 shows the performance of each of the 60 NoFib bench-
mark programs when trained and measured on total runtime, GC
time, and live size, respectively. In each graph, the horizontal axis
lists the benchmark programs in order of increasing number of
genes. The vertical axis shows the normalized performance of
each benchmark, reporting the ratio of AUTOBAHN-optimized-
performance to the original program’s performance. Values less
than one thus represent improvement. Because AUTOBAHN returns
the program unchanged if it cannot find an improvement, we ex-
pect values to be less than or equal to one. In the graphs, programs
whose data point is a triangle represent programs for which the AU-
TOBAHN-optimized version of the program performs slightly worse
than the original. A manual review revealed the degradation was
caused by noise. Circles represent programs whose original perfor-
mance took so close to zero time that no measurable improvement
was possible.

The results are encouraging. Following NoFib conventions, we
report results as geometric means. Overall, AUTOBAHN decreased
the runtime by 8.5%, reduced time spent in GC by 18%, and re-
duced the live size by 7.2%. The lcss program saw the best im-
provement on all metrics, with deltas of 89%, 98%, and 99.3%
respectively. The comments for lcss state there are many oppor-
tunities for optimization, which helps explain why this particular
program improved so much.

To explore the reason for the performance improvements, we
selected the twelve NoFib programs whose run times decreased
the most and compared the heap profiles of the original and AU-
TOBAHN-annotated versions3. The heap profiles of the improved
programs all reported decreases in peak memory use. However, the
shapes of the graphs remained largely unchanged. Some programs,
like simple and fulsom, reduce the amount of time the program
spent at peak memory. We believe this reduction in memory usage
translated to the runtime improvements.

5.3 Strict Haskell
Strict Haskell [34] provides language pragmas to make Haskell
modules strict rather than lazy by default to improve performance.
Specifically, as of version 8.0.1, ghc has two additional language
extensions: -XStrictData and -XStrict. According to the ghc
wiki page, when someone compiles a module with the pragma
-XStrictData, datatypes declared in that module become strict
by default. When compiled with -XStrict, the compiler makes
functions, data types, and bindings in the module strict by default.

How does the performance of programs compiled with Strict
Haskell compare to those optimized with AUTOBAHN? To answer
this question, we compiled and ran the NoFib programs with ghc
8.0.1 using -O2, -XBangPatterns, -funbox-strict-fields,
-XStrict, and -XStrictData flags. Figure 5 shows the results.
Seventeen of the NoFib programs failed when using Strict Haskell.
These programs failed for one of the following reasons:

3 Available at https://genetic-strictness.github.io/Autobahn/
profiles

Program Name LOC # of Files # of Genes
rfib 12 1 5
x2n1 35 1 6
tak 16 1 9
primes 18 1 12
banner 108 1 17
queens 19 1 18
bernouilli 40 1 19
kahan 58 1 23
exp3 8 93 1 24
pidigits 22 1 27
integrate 43 1 28
cryptarithm1 164 1 33
wheel-sieve1 41 1 38
fasta 58 1 44
integer 68 1 47
wheel-sieve2 47 1 47
life 53 1 48
rsa 74 2 50
binary-trees 74 1 51
maillist 178 1 52
gen regexps 39 1 54
gcd 60 1 57
scc 100 2 59
cryptarithm2 128 1 60
lcss 60 1 71
atom 188 1 74
paraffins 91 1 75
fannkuch-redux 103 1 88
calendar 140 1 92
ansi 128 1 96
awards 115 2 99
fish 128 1 102
puzzle 170 1 103
treejoin 121 1 119
n-body 188 1 122
eliza 267 1 138
power 142 1 180
cichelli 195 4 205
cse 464 2 222
pretty 265 3 229
pic 527 9 235
clausify 184 1 246
minimax 238 6 299
boyer2 723 5 302
expert 525 6 424
hidden 507 14 430
gamteb 701 13 458
multiplier 501 1 468
prolog 643 9 514
infer 590 16 586
fem 1286 17 655
scs 585 7 770
simple 1129 1 845
reptile 1522 13 895
symalg 1146 11 1148
gg 812 9 1192
cacheprof 2151 3 1228
fulsom 1392 13 1433
fluid 2401 18 1688
anna 9561 32 7709

Table 2. Statistics for the NoFib benchmarks
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Figure 4. Performance of AUTOBAHN-optimized programs normalized by the original program’s performance; lower values are better. The
data show geometric mean improvements of 8.5%, 18%, and 7.2%, and maximum improvements of 89%, 98%, and 99.3% on the total
runtime, garbage collection, and live size performance criteria, respectively.
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Figure 5. Runtime of AUTOBAHN-optimized programs and programs compiled with Strict Haskell normalized to base programs run in ghc
8.0.1. Lower on the y-axis means the AUTOBAHN version of the program ran faster.

• The program uses an infinite list. For example, wheel-sieve1
and wheel-sieve2 specify an infinite list of primes but de-
mand only the first few. With Strict Haskell, the programs try to
evaluate the infinite lists.

• The program depends on a lazy evaluation of error to detect a
specific problem. For example, infer puts error at the end of
a list; reaching this value signals an error. With Strict Haskell,
the error is always triggered.

• The program contains a latent dynamic error. For example,
reptile crashes when nil is passed to the tiletrans func-
tion, which does not occur when the program is evaluated lazily,
but does occur when using Strict Haskell.

Nine programs performed worse, some significantly so, because
Strict Haskell forces the evaluation of expressions that aren’t
needed. AUTOBAHN did better than Strict Haskell on all of these
programs. Of the programs that improved under Strict Haskell, two
did better than AUTOBAHN: exp3 8 and treejoin. In all other
cases, AUTOBAHN did as well as or better than Strict Haskell. It is
possible to add laziness annotations to the programs whose perfor-
mance degrades under Strict Haskell, but that requires determining
where to insert the annotations, another hard problem [6].

5.4 Case Study: gcSimulator
As a case study, we used AUTOBAHN to optimize gcSimulator,
a garbage collection simulator that uses trace files generated by
the Elephant Tracks [27] tool to understand the performance of
garbage collectors. The simulator consists of 20 files and 2026 lines
of code. A chromosome for this program consists of 132 genes.
The trace files are very large, on the order of gigabytes, resulting
in gcSimulator execution times on the order of several minutes.
This performance makes running AUTOBAHN prohibitively time
consuming. Consequently, we used only the first 512KB of one of
the traces as the input data source, specifically, a prefix of the trace
for the batik program of the DaCapo benchmarks [3]. We then
evaluated the performance of the AUTOBAHN-optimized version of
gcSimulator on increasing sizes of the same trace. For this study,
we seeded the initial population with the bare program; we did not
include the annotations the original author had added by hand. For
these measurements, we compiled all versions of the gcSimulator
with the same settings as NoFib along with -rtsopts to gather
runtime information.

Input Data Peak Alloc(MB) Total Runtime GC Time
0.8 0.898 0.556training data 0.8 0.905 0.417

1
3

of trace 0.140 0.616 0.094
0.137 0.586 0.050
0.318 0.612 0.1361

2
of trace 0.021 0.812 0.069

full trace 0.072 0.914 0.444
0.005 0.764 0.272

Table 3. Peak memory allocation, total runtime, and GC time
for hand- and AUTOBAHN-optimized version of gcSimulator,
normalized to the bare program. For each band, the first row shows
the by-hand results and the second those for AUTOBAHN.

Table 3 shows the performance of the hand- and AUTOBAHN-
optimized programs normalized to the bare version. AUTOBAHN
strove to decrease peak allocation, a choice consistent with the goal
the original author used when manually inserting bang patterns.
Each colored band in the table represents a run with trace inputs of
increasing size. When run against the training data, both the hand-
and the AUTOBAHN-optimized version use 80% of the peak mem-
ory of the unannotated version. As the input data increased in size,
we see AUTOBAHN’s version pull ahead in reducing peak memory
usage and, as a result, time spent in garbage collection. When given
the entire batik trace, we see AUTOBAHN has reduced memory
usage to less than 1% of the unannotated version, compared to the
original author’s 7%. This change results in an overall reduction
of runtime to 76.4% of the bare program. Figure 6 shows the heap
profile for three versions of gcSimulator when run on half of the
batik trace. We see the expert’s annotations reduced the live size
of the program and eliminated some thunk leaks. The AUTOBAHN-
optimized version further reduced the live size and also changed
its allocation behavior. In particular, we do not see a sharp rise in
memory usage at the end of the program’s lifetime. Table 3 and Fig-
ure 6 further show that the annotations inferred for a small training
set provide benefits even when the program is given larger inputs.

5.5 Case Study: Aeson Library with Two Different Drivers
As a second case study, we developed two driver programs that
both use the Aeson [5] parser library to manipulate a JSON file
containing a list of records. The first driver program simply val-
idates that the data file is well formed. Because it does not need
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(b) Hand optimized
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Figure 6. Heap profiles of gcSimulator on 1
2

of the batik trace.

to deeply parse the data, using the library lazily provides the best
performance. The second driver program converts the entire data
file into a corresponding Haskell data structure, and so using the
library eagerly provides the best performance. We call these two
drivers validate and convert, respectively. To limit the search
space to a reasonable size, we pick a subset of the Aeson library.
As a result, each driver/library pair consists of two files totaling
320 lines of code. Each pair has a chromosome composed of 194
genes.

For each driver program, we ask AUTOBAHN to optimize a
combination of the driver and the Aeson library to improve runtime
performance. To construct a scenario with space for improvement,
we have the driver programs use the “wrong” version of the Aeson
parser and let AUTOBAHN try to correct the strictness annotations.

Input Data Peak Alloc (MB) Total Runtime GC Time
1.0 0.869 0.979A (46MB) 0.457 0.661 0.434

B (50MB) 0.999 0.907 1.062
0.853 0.830 0.808
1.0 0.638 0.855C (51MB) 0.834 0.754 0.671

D (68MB) 1.0 0.900 0.988
0.810 0.787 0.694

Table 4. Peak memory allocation, total runtime, and GC time
for AUTOBAHN-optimized version of two Aeson driver programs,
normalized to the bare program. For each band, the first row shows
the results for validate and the second for convert.

For data, we use JSON files published by the City of Chicago [1]:
a 12MB file objects.json for training and four other data files of
increasing size, which we call A, B, C, and D, for testing. For these
measurements, we compiled the Aeson library and our drivers us-
ing the same settings as NoFib except we add -rtsopts to gather
runtime information and remove -funbox-strict-fields since
Aeson does not use strict datatypes. We used total runtime as the
fitness function.

Table 4 shows that despite training the two drivers on the same
data and optimizing both for runtime, AUTOBAHN’s optimizations
had different results. The validate driver ran in 63% of the time
of its bare counterpart on data set C. The convert driver reached its
fastest runtime on set A at 66%, but also reduced its peak memory
usage to 45% of its bare version. The closest the validate driver
gets is using 85% of the bare peak memory usage on set B. Looking
at the geometric means, the annotations on convert lowered its
peak memory usage to 71.7% of the bare version, indicating its
annotations focused on reducing space usage. The annotations on
validate do not change the peak memory usage, evidenced by the
small reduction to 99.98% of the bare memory usage and 96.8% of
the bare GC time.

To realize these performance improvements, AUTOBAHN in-
fers different strictness annotations for the Aeson library. For the
convert driver, AUTOBAHN adds a critical bang into the lazy
parser before a pattern that stores the result of inserting values into a
hashtable. Since the program eventually needs to fully evaluate the
values in the hashtable, that bang helps avoid unnecessary thunks
during updates. For the validate driver, AUTOBAHN removes the
bang in the strict parser that triggers insertion into the hashtable so
that the driver program does not waste effort updating a hashtable
that is never evaluated. Both bangs appear before the result of a call
to H.insert in the objectValues function.

5.6 10-fold Cross-validation
To assess the applicability of AUTOBAHN’s optimizations to non-
training data, we perform 10-fold cross-validation on gcSimulator
and the convert Aeson driver. To apply this methodology to the
optimization of gcSimulator, we first select ten different input
data sets. Next, we use AUTOBAHN to optimize gcSimulator
using each input file in turn to obtain ten different optimized pro-
grams. Finally, we evaluate each optimized program on all ten
inputs. For these experiments, AUTOBAHN optimized for runtime.
We measured the performance of the optimized programs on both
runtime and live size. The methodology for convert is analogous.

For gcSimulator, we chose as input ten different traces of
programs from the DaCapo Benchmarks. Because the full traces
lead to long training times, we selected the first 35 million lines
from each trace. We tested the optimized programs, however, on
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Figure 7. 10-fold evaluation for gcSimulator, showing runtime
and live size performance improvements of AUTOBAHN versions of
gcSimulator compared to the bare program. We highlight points
where the AUTOBAHN-optimized program ran on its training trace.
We also show how the hand-annotated program performed.
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Figure 8. 10-fold evaluation for convert, showing runtime and
live size performance improvements of AUTOBAHN versions of
convert compared to the bare program. We highlight points where
the AUTOBAHN-optimized program ran on its training trace.

the full traces. For convert, we chose ten different JSON data sets
from the data made available by the City of Chicago, ranging in size
from 32 to 68MB. We trained and tested the optimized programs on
the full data files.

Figures 7 and 8 show the performance of each program/input
pair compared to the bare program for gcSimulator and convert,
respectively. Each label training-opt on the horizontal axis cor-
responds to a program trained on input training and evaluated
with performance criteria opt. For gcSimulator, we also show
the performance of the hand-optimized version of the program.

Figure 7 shows that AUTOBAHN produces consistent runtime
improvements of roughly 60% for gcSimulator. The live size
measurements suggest the runtime improvement likely comes from
fixing thunk leaks. The data also shows that AUTOBAHN annota-
tions outperform the hand annotations for gcSimulator: the ge-
ometric mean of gcSimulator running times when optimized by
AUTOBAHN is 58.6% of the bare runtime, compared to a geomet-
ric mean of 64.8% of bare for the hand-optimized version. AUTO-

BAHN-optimized versions used a geometric mean of 9.6% of the
bare live size whereas the hand optimized ones used 22.8%.

The AUTOBAHN version of convert reduced its total runtime
to a geometric mean of 65.2% of the bare runtime. AUTOBAHN
also reduced the live size to a geometric mean of 78.6% of the bare
live size, which contributed to the improved runtime. Since the bare
version of the convert driver evaluates as much as it can to weak
head normal form, the live size and runtime are related.

5.7 AUTOBAHN Performance
Finally, Figure 9 shows how long it took AUTOBAHN to analyze
each of the programs in the NoFib benchmark suite for the total
runtime and GC time performance criteria. When optimizing the
benchmarks for runtime, AUTOBAHN took 861.166 seconds, or
14 minutes (geomean). When AUTOBAHN is run optimizing for
GC time, it took 732.451 seconds, or 12 minutes. We see that
there are some benchmarks where AUTOBAHN runs for close to
no time at all when optimizing for runtime and GC time. In those
cases, AUTOBAHN found that the bare program had a runtime of
0 CPU seconds or spent no time in the collector. Since it cannot
optimize below that value, AUTOBAHN terminated and reported the
bare program as the optimal chromosome. We have yet to run this
experiment to capture the runtime when optimizing for live size.

As for our case studies, it took AUTOBAHN 5 hours and 34 min-
utes to optimize the gcSimulator and 2 hours and 12 minutes to
optimize the Aeson convert driver. For each program, we ran AU-
TOBAHN once, optimizing for runtime. These two programs in par-
ticular have much longer running times than those in the benchmark
suite. For instance, gcSimulator emulates an entire program run,
complete with garbage collections, on top of a garbage collected
language. This results in a long runtime before AUTOBAHN adds
any strictness.

Since the use case for AUTOBAHN is that programmers like Pat
and Chris use the tool once they have a working program they want
to optimize, we see these running times as acceptable. We imag-
ine Pat and Chris starting the tool before they go to bed and wake
up with candidate annotations to consider. We note that a portion
of AUTOBAHN’s running time comes from parsing Haskell source
files, using haskell-src-exts to add bang patterns, pretty print-
ing the resulting program, and then calling ghc to compile and run
the program. If we used the ghc compiler API to programmatically
modify and compile various versions of the programs to be opti-
mized, we could reduce AUTOBAHN’s overhead at the cost of a
tighter coupling to the fast-evolving ghc compiler.

6. Related Work
6.1 Static Analysis
Identifying opportunities to remove laziness has long been a key
optimization in compilers for lazy functional languages [9, 22,
24]. Compilers traditionally use various forms of strictness anal-
ysis [18] to identify program fragments that can be evaluated ea-
gerly. Many of the strictness analyses in the literature are based on
applying forward abstract interpretation [21, 28, 39] to richer and
richer languages. Other approaches are based on various flavors of
resource-aware type systems [13, 37, 38]. The current strictness
analyzer in ghc uses backward abstract interpretation, sacrificing
some accuracy for compilation speed [25, 31]. Because such anal-
yses are static, they are necessarily approximate. Since they are
part of the compiler, they are necessarily conservative, identify-
ing binding locations as strict only if they can guarantee that ea-
gerly evaluating the corresponding expression can never cause non-
termination. AUTOBAHN is a dynamic analysis, so it does not have
to approximate. It is not part of the compiler. Therefore, it does
not have to guarantee termination on all inputs. Instead, it allows
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Figure 9. AUTOBAHN running time to optimize each program in the NoFib benchmark suite.

programmers to decide whether a given annotation set has the nec-
essary termination behavior on an application-specific basis. AU-
TOBAHN does require programmers to reason about the soundness
of the inferred annotation sets, which may not be easy.

6.2 Including Dynamic Information
There is extensive literature on using dynamic information to im-
prove compiler performance. In the following, we focus only on
work that has used dynamic information to improve the perfor-
mance of Haskell programs by changing when expressions are eval-
uated. Ennals and Peyton Jones [9] extended ghc’s strictness anal-
ysis to incorporate dynamic information, exploiting the observa-
tion that most thunks are either always evaluated or are cheap to
evaluate. They speculatively evaluated thunks, aborting if the eval-
uation took too long. This approach produced significant speedups
(5-25%) on programs from the NoFib benchmark over purely static
approaches. In contrast to AUTOBAHN, the profiling overheads are
necessarily part of the execution time of the user program. In prac-
tice, the complexity of the analysis outweighed its performance
benefits, and it never became part of the official ghc release.

Recent work [36] explores using runtime profiling in conjunc-
tion with static analysis to enable embedded seq calls, dynamically
adjusting the amount of parallelism in the program. As in Ennals’
work, this approach instruments the users’ code, so there is a run-
time overhead that cannot be avoided. Earlier work [12] explored
using dynamic profiling to identify program points that could be
profitably executed in parallel, essentially finding places to insert
par. Unlike AUTOBAHN, the focus of this work is on adding par-
allelism, rather than improving performance by reducing laziness.

The Seqaid [29] project on hackage seems closely related to
AUTOBAHN. It is a Haskell compiler plug-in that uses dynamic pro-
filing to selectively force thunks via deepseq-bounded. As with
AUTOBAHN, Seqaid is not guaranteed to be sound. Comments on
the project webpage indicate the optimizer is under development.
We have not been able to compile the code and are not aware of any
paper describing the algorithms or reporting on its performance.

6.3 Other Approaches
The recent Strict Haskell [34] effort avoids the laziness prob-
lem by allowing programmers to make specific modules strict-
by-default rather than lazy-by-default by using the -XStrict and
-XStrictData language pragmas. This approach is complemen-
tary to AUTOBAHN’s, offering performance benefits at the cost of
eliminating laziness. Adding such pragmas to existing code can be

problematic, triggering non-termination or reducing performance.
Of course, laziness can be recovered by inserting explicit delays,
which is another known hard problem [6].

Chang and Felleisen’s recent work [6] is the complement of
AUTOBAHN. It uses dynamic profiling to compute a laziness po-
tential that guides the insertion of laziness annotations into pro-
grams written in a strict language. It would be interesting to see
whether their approach could be adapted to inferring performance-
enhancing strictness annotations for Haskell programs. As with
AUTOBAHN, this adapted approach would face the soundness prob-
lem, which arises from trying to eliminate rather than introduce
laziness. Another possibility would be to use laziness potential to
add laziness to Strict Haskell programs.

7. Conclusion
Excessive laziness has been a performance problem for lazy func-
tional languages since their inception. Despite decades of work on
optimizing compilers for lazy languages and associated strictness
analyses, poor performance remains a problem. Strictness annota-
tions allow programmers to control the laziness of their programs,
but they require high levels of expertise to use correctly. AUTO-
BAHN is a tool we have designed and built that uses a genetic algo-
rithm to automatically infer annotations that optimize program per-
formance. Users inspect the suggested annotation sets for sound-
ness and can ask AUTOBAHN to automatically patch their program
sources. Experiments show that AUTOBAHN improves runtime per-
formance on NoFib benchmark programs an average of 8.5% and
up to 89%. In no case does AUTOBAHN degrade performance.
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