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MRFy: Remote Homology Detection for
Beta-Structural Proteins Using Markov
Random Fields and Stochastic Search

Noah M. Daniels, Andrew Gallant, Norman Ramsey, and Lenore J. Cowen

Abstract—We introduce MRFy, a tool for protein remote homology detection that captures beta-strand dependencies in the Markov
random field. Over a set of 11 SCOP beta-structural superfamilies, MRFy shows a 14 percent improvement in mean Area Under the
Curve for the motif recognition problem as compared to HMMER, 25 percent improvement as compared to RAPTOR, 14 percent
improvement as compared to HHPred, and a 18 percent improvement as compared to CNFPred and RaptorX. MRFy was implemented
in the Haskell functional programming language, and parallelizes well on multi-core systems. MRFy is available, as source code as well

as an executable, from http://mrfy.cs.tufts.edu/.

Index Terms—Protein structure prediction, remote homology detection, structural bioinformatics

1 INTRODUCTION

C OMPUTATIONAL approaches to the problem of recogniz-
ing remote homologs of well-annotated protein struc-
tures from sequence have emerged as some of the most
successful high-throughput strategies for developing
hypotheses about the functions of unknown proteins. Rec-
ognition of remote homologs from protein sequence is a
challenging problem, however, particularly for g-structural
motifs, where many of the residues whose interactions drive
the fold can be a variable distance, and sometimes a long
distance apart in sequence [1]. Many of the popular
sequence-based methods for recognizing close homologs,
such as Profile Hidden Markov Models (HMMs) [2], [3],
perform particularly poorly on g-structural motifs, precisely
because the HMM model is not powerful enough to capture
these long-range dependencies [4], [5], [6], [7], [8]. Several
ways to generalize these HMMs to Markov random fields
(MRFs) have therefore been proposed [1], [9], [10], [11], [12],
[13], [14], but with the additional power of the random field
come several computational challenges. In particular, there
is a trade-off: as the complexity of the random field
increases, so does its predictive power, but so too do the
required amount of training data and the computational
complexity of aligning a query sequence to the model.

In 2010, Menke et al. introduced SMUREF [1], a Markov
random field method designed to recognize protein sequen-
ces that fold into S-propeller shapes. While SMURF greatly
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improved S-propeller recognition over existing HMM and
threading methods, it was actually quite simple as far as
MRFs are concerned: it combined a score based on a stan-
dard profile hidden Markov model with a conditional prob-
ability score that incorporated the statistical preferences of
the amino acid residues that are hydrogen-bonded in
B-sheets, thereby capturing some of the strongest long-
range dependencies in g-structural motifs. The pairwise sta-
tistical preferences were learned from solved p-structures
across the entire PDB, so there was sufficient training data.
However, there was a great computational cost: the mini-
mum-energy alignment of the sequence to the Markov ran-
dom field model was generated exactly using a doubly-
exponential multi-dimensional dynamic program.

This computational cost prevented the SMURF MRF
from being applied beyond propellers to other g-structures.
When run on B-barrels, or other B-structures with even
moderately complex strand interleaving patterns, the exact
computation of the SMURF MRF score becomes intractable.
There are two ways to mitigate the computational bottle-
neck. One approach is to simplify the random field, and
only consider some of the pairwise statistical preferences
for the p-strands, namely those that are more local in
sequence. This is the methodology we introduced in a 2012
paper of Daniels et al. when we designed SMURFLite [15].
The other approach is to retain the entire SMURF MREF, but
consider stochastic search approaches to heuristically
explore alignments of the sequence to the MREF, in order to
find low-energy but not necessarily minimum-energy
parses. This is the approach we take in the present work.

In particular, we introduce MRFy, a suite of methods to
perform stochastic searches of alignments to the SMURF
MRF. We conducted a stringent leave-family-out cross-vali-
dation experiment involving recognizing different p-barrel
superfamilies. In this experiment, MRFy, combined with
Kumar and Cowen’s simulated evolution [16], [17] outper-
forms HMMER [2] (a popular HMM method), Raptor [18]
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Fig. 1. A MRFy Markov random field with two g-strand pairs.

(a popular threading method), RaptorX [19] and CNFPred
[20] (state-of the art threading methods), and HHPred [21]
(a profile-profile HMM method that has performed well at
recent CASP competitions). MRFy is available for download
at http:/ /mrfy.cs.tufts.edu, under the GNU Public License,
version 2. MRFy is written in the Haskell functional pro-
gramming language; some details of implementation are
further discussed in [22].

Finally, we find the best approach is a hybrid combination
of SMURFLite and MRFy: we initialize the MRFy stochastic
search from the best sequence parse that SMURFLite can find,
and then run the stochastic search from there. On the same set
of B-barrel superfamilies considered in [15], we show an
improvement of 3.4 percent in the mean (3.6 percent in the
median) Area Under Curve (AUC) for g-structural motif rec-
ognition as compared to the SMURFLite results in [15]. For
the same benchmark set, MRFy initialized using SMURFLite
shows an improvement of 14 percent in the mean (15 percent
in the median) over HMMER ([2]), an improvement of 25 per-
cent mean (40 percent median) as compared to RAPTOR
([18]), an improvement of 18 percent mean (21 percent
median) over CNFPred [20] and RaptorX [19], and an
improvement of 14 percent in the mean (23 percent median)
in AUC over HHPred ([21]). We were able to nearly match
this performance (within 1 percent in AUC) independent of
any use of the SMURFLite codebase, by using multiple differ-
ent scalings of the size of the template to the test sequences;
see Section 2.3 for details. This is significant, because it uses
only the MRFy package itself, so it is very easy for others to
run. For clarity, we note that these summary statistics come
from first computing the mean and median AUC for each
method separately, and then reporting the overall improve-
ment in both statistics achieved by MRFy; a full superfamily-
by-superfamily comparison appears in Table 4.

2 METHODS

2.1 Markov Random Field Model
MRFy builds on the SMURF and SMURFLite Markov ran-
dom field model [15], which uses multidimensional
dynamic programming to simultaneously capture both
standard HMM models and the pairwise interactions
between amino acid residues bonded together in S-sheets.
In particular, the “Plan7” hidden Markov model as
implemented by HMMER (so named because exactly seven
transition edges are allowed per node) is modified to repre-
sent hydrogen-bonded g-strands with additional, non-local

edges. Because the g-strands in a SMURF or MRFy template
represent consensusp-strands, those present in at least some
fraction (in our experiments, at least half) of the sequences
participating in the training alignment, we prohibit inser-
tions and deletions in those strands. Thus, we collapse those
nodes of the “Plan7” model to be just match states; the tran-
sitions to insertion and deletion states are removed. Fig. 1
illustrates this architecture.

The standard form of the Viterbi recurrence relations
for computing the most likely path of a sequence through
a hidden Markov model, as incorporated in HMMER [2] is

V}'lyl (i—1) x AM; M
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In the SMURF or MRFy Markov random field model, we
add non-local interactions to these probabilities, resulting in
conditional probabilities. When column j of an alignment is
part of a B-strand and is paired with another column n(j),
the probability of finding amino acid z; in column j depends
on whatever amino acid 2’ is in column 7(2). If 2’ is in posi-
tion ¢’ in the query sequence, Viterbi's equations are altered;
for example, V; (i) depends not only on V/*{ (i — 1) but also

on V1 (i'). The distance between j and 7(;j) can be as small

as a few columns or as large as a few hundreds of columns.
Because V" (i) depends not only on nearby values but also

on Vj;% ('), we must modify the Viterbi recurrence relations.

Note that hydrogen-bonded g-strand residues may only
occupy match states in the Markov random field, so only
the corresponding terms of the recurrence relation need be
modified. The revised Viterbi recurrence relation for the

Markov random field is
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where z; represents the amino acid in column 7§, which is
hydrogen-bonded to the amino acid z; in column j. Then,
transforming to negative log space, we actually solve
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given the transformations:

al, = —log as;
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P'(x; | xj) = —log P(x; | ;).
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This is exactly the recurrence relation that SMUREF [1] and
SMURFLite [15] solve using multidimensional dynamic
programming. Note that gaps are prohibited within
B-strands, ensuring that if z; and z,; are hydrogen-bonded,
and x;y» and z,j;» are hydrogen-bonded in the same B
strands, then z,; and ;2 are exactly two amino acids
apart in sequence. The interleave of a pair of matched
B-strands is defined as the number of other B-strands that
occur between those two strands in the protein sequence,
plus one. As demonstrated by Daniels et al. [15], as the max-
imum interleave of a pair of matched p-strands increases,
the computational complexity of computing the best score
for the associated SMURF MRF grows exponentially.

As an alternative to exactly solving these more complex
recurrence relations, we might consider a divide-and-con-
quer approach. Each g-strand can be thought of as breaking
the larger model into two smaller models; collectively, all
the g-strands divide the Markov random field into many
small, independent hidden Markov models. Thus, for any
particular path through the Markov random field, corre-
sponding to a particular placement of query sequence resi-
dues onto the nodes of the model, we could compute the
augmented Viterbi score by summing the Viterbi scores of
each smaller hidden Markov model, along with the contri-
bution to the Viterbi score from the g-strands.

Since only match states are allowed for g-strand residues,
the contribution of each such residue is only:

VIV () = ey () + VMG — 1)+ ayyy, + Plai|my)

The asymptotic complexity of the Viterbi algorithm is
O(mn), where m is the length of the model and n is the
length of the query sequence. Furthermore, the asymptotic
complexity of the beta-strand contribution to the Viterbi
score for a particular placement of residues is just O(b),
where b is the combined length of the g-strands.

Thus, a new algorithm for computing the optimal path
through a Markov random field for a given query sequence
presents itself. Since we require that every g-strand position
be occupied by a residue (as we force those positions into
match states), we could simply consider every possible assign-
ment of a residue to a p-strand, computing the score for each
one, and choose the best-scoring placement. Note that parallel
versus anti-parallel g-strands are captured by the structural
alignment from which the SMURF or MRFy Markov random
field is built, and thus need not be treated any differently.

Metaphorically, we can picture the residues of the query
sequence as beads, and the Markov random field as the
string of a necklace. The g-strands can be thought of as par-
ticular substrings of the string that must be covered by
beads, while non-g regions may be exposed (resulting in
delete states in the model). To continue the metaphor, we
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may jam extra beads onto non-g regions of the string, result-
ing in insert states in the model. Given that the beads
already have a specified order, we must consider all the
ways to slide the beads up and down the string such that all
of the p-regions are covered. Since the regions between
B-strands can have their contribution to the score computed
according to the Viterbi recurrence relations, we need only
consider all the unique ways to assign residues to the
B-strand nodes.

2.2 Proof that There are an Exponential Number of
Assignments

However, it is easy to show that there are an exponential

number of such assignments, in terms of the length of the

query sequence.

Definition Let a Markov random field model (N, B) be defined as
a sequence N of nodes n;,i € (1.m), and a sequence B of
B-strands b;,i € (1..k). Each B-strand has length 1;, and con-
tains a subsequence of the nodes N. This subsequence is deter-
mined by the specifics of the model, which can be referred to as
bij.i € (1.m),j € (1..;). Let a query sequence be defined as a
sequence R of residues r;,i € (1..n).

Definition Let L = Z l;.
ii<=k
Lemma 2.1. Given a model (N, B) and a query sequence R, L res-
idues are placed in B-strands.

Proof. Because each g-strand b; must be populated by
exactly [; residues, Vj,j > 1, b;; is uniquely determined
by the sequence R. For each g-strand position b;;, one res-
idue is placed. Thus, > ,; _,l; residues are placed in
B-strands. O

Theorem 2.2. For a Markov random field (N,B) with k
p-strands b;, each of length l;, and thus containing positions
for residues b;; and a query sequence ri of length n, there are
O(n*) ways to assign residues to the B-strands.

Proof. From the n residues in the query sequence R, we
need to place L residues across all B g-strands. We repre-
sent this as choosing an index ¢ € (1..n) for the first posi-
tion b;; of each B-strand. Since each B-strand b; consumes
l; residues, this choice for the first g-strand, by, leaves
n— L —1; possible placements for by. In practice,
p-strands range from two to twelve residues, so to sim-
plify counting, we assume each /; is simply a maximum
length 1,,,,,. This only decreases the number of possible
assignments, yielding a lower bound on the number of
placements. Then choosing an index to place on b;;, in
general, leaves n — L — (i X lynq,) choices for b(;1y;. Thus,
there are

T] n—L—Gxlaw) = (n =20 =k x )BT D)
ie(1..k)

possible placements of R onto (N, B). Asymptotically, as
n grows, this is dominated by n*, leading to an asymp-
totic complexity of @(n*). O

A typical Markov random field might have 10 or 20
p-strands, and a typical protein query sequence might have
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between 300 and 600 residues. Thus, if we wish to consider
all possible paths through a Markov random field for a pro-
tein sequence, we must consider as many as 600" ~ 6 x
10?7 possible paths through the model. Clearly, this compu-
tation can be broken into many parallel parts, but this still
poses an intractable problem in many cases.

2.3 Stochastic Search

Since an exhaustive search for an optimal alignment of a
protein sequence to our Markov random field model is com-
putationally impractical in many real cases, we turn to sto-
chastic search to mitigate this complexity.

Stochastic search encompasses a family of approaches for
finding optimal or near-optimal solutions to optimization
problems. Stochastic search approaches are promising
when a search space is large, so that exhaustive search is
prohibitive, and when an optimization problem does not
lend itself to analytic solutions. The generic form of stochas-
tic search is that a solution is guessed at and evaluated, and
then subsequent guesses are made as refinements to this ini-
tial guess, until some termination condition is met. The
function used for evaluation is called the objective function.

Framed as an optimization problem, MRFy, like SMUREF,
seeks to minimize the augmented Viterbi score, which equa-
tes to maximizing probability (recall that this score is the neg-
ative log of a probability). SMURF [1] finds this minimum
exactly, using multi-dimensional dynamic programming,
which is exponential in the interleave number of beta strands.
MRFy, in contrast, uses stochastic search, as described next.

Given a placement of query-sequence residues into
B-strand nodes of the Markov random field, the score can be
computed exactly. Thus, the search space is the set of all pos-
sible ways to place residues on these nodes. MRFy, as a pack-
age, implements many different stochastic search strategies
for finding the optimal alignment of a query sequence to the
Markov random field. A particular MRFy strategy involves
specifying three different criteria: first, how the initial guess
is generated (five options), second, how the stochastic search
proceeds (we include a simulated annealing, genetic algo-
rithm, and local search option), and finally, when to termi-
nate and output the search and output the best alignment
seen thus far (three options). We first describe the initial
guess options, then the termination options, and finally the
options for stochastic search implemented in MRFy.

Many stochastic search techniques rely on a gradient
ascent (or descent) approach, which makes moves (or refines
guesses) along the steepest gradient, leading quickly to local
optima; various heuristics such as simulated annealing [23]
can then help avoid getting stuck in poor local optima.

However, we know of no way to compute a gradient on
the search space of g-strand placements, and so we must
take approaches that do not rely on this gradient. Instead,
we must rely on a random-mutation model of search, which
generates one or more candidate solutions (guesses) from a
previous solution, and then evaluates the cost function (in
our case, the augmented Viterbi score) to determine whether
those guesses are better or worse than the previous step.
This can be likened to climbing a hill in the dark, feeling
one’s way with one foot before committing to a step. This
approach is referred to as random-mutation hill climbing [24].

In our representation, a particular solution is represented
by an ordered list of integers, one integer per S-strand in
the Markov random field. The value of each integer indi-
cates the index, in the query sequence, of the residue
assigned to the first position of that g-strand. Since the align-
ments to the regions of the Markov random field are solved
exactly by the Viterbi algorithm, this ordered list of integers
uniquely represents a solution to a Markov random field.

While the picture we have presented for our Markov ran-
dom field model is most precisely explained by assigning
residue indices to the positions of g-strands, it may be more
intuitive to consider the equivalent problem of “sliding”
these g-strands along the query sequence. We will use this
analogy in the following description of initial guesses.

We explored five models for generating initial guesses for
our search techniques; four are internal to MRFy, and oneis a
hybrid approach that relies on SMURFLite. A random-place-
ment model uniformly positions the g-strands along the query
sequence, under the constraint that only legal placements
may be generated, and thus the placement of any g-strand
must leave room for all the other g-strands in the model.

A secondary-structure prediction model uses the PSIPRED
[25] secondary-structure prediction program to determine
the positions of p-strands. Given a PSIPRED prediction for
the secondary structure of a query sequence, we place
B-strands at the most likely locations according to this pre-
diction profile, randomized by a small amount of noise.

A template-based model is based on the observation that true
homologs to a structurally-derived template should have
their g-strands in very roughly similar places, in sequence, to
the proteins that made up that template. This will not always
hold, but appears to provide for reasonable initial guesses.
Given the position of each g-strand within a template Markov
random field, we scale the query sequence linearly (as it may
be shorter or longer than the model) and place the g-strands
in scaled positions. Note that we do not scale the g-strands
themselves; their lengths are preserved. We scale only the
distances between g-strands. We inject a small amount of
noise into the placements, so that population-based models,
such as multi-start simulated annealing and genetic algo-
rithms, start with heterogenous solutions. This is the initial
quess method that we used to generate the results in Tables 1, 2,
and 3 in Fig. 5, and the MRFy" and MRFy? results in Table 4.

Next, we implemented a variant of the template-based
model that attempts to address an observed weakness of
that model. Suppose a query sequence actually contains
several domains, and only one of those domains is actually
homologous to a particular template. Then, the template-
based initial guess will be a poor initial guess, as the
p-strands will be distributed along the entire multi-domain
sequence, rather than concentrated in the homologous
region. Thus, it will take the stochastic search a long time to
converge on an optimal placement. This multi-scaled tem-
plate-based model scales the g-strand placements of the tem-
plate up to a variety of possible corresponding lengths in
the query sequence. Assume the model from the template 7'
is of length ¢, and let the length of the query sequence @) be
g. Then, if ¢ > t, consider possible lengths r of the region R
of the @ homologous to T, ranging from ¢ up to g, in incre-
ments of 10. Also, consider that the starting position of each
of these regions can range from 0 up to ¢—r, also in
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TABLE 1
Stochastic Search Performance on Eight-Bladed s-Propeller

Min Score Mean Score Std Score Mean Time (s)

SA 200 2,112 2,139 12.2 29.3
SA 500 2,129 2,146 9.3 1,020
SA 1000 2,112 2,130 7.8 3,314
GA 1000/10 2,105 2,126 6.6 285
GA 1000/50 2,094 2,118 7.7 1,239
GA 1000/100 2,107 2,120 3.8 548
GA 10000/10 2,087 2,111 72 5,809
GA 10000/50 2,094 2,112 7.1 5,174
GA 10000/100 2,079 2,114 9.0 10,226
LS10s 1,992 2,015 194 10
LS30s 1,982 1,991 10.9 30
LS5m 1,818 1,876 37.2 300

Performance of stochastic search techniques on an 8-bladed B-propeller tem-
plate. SA is Simulated Annealing, GA is Genetic Algorithm, and LS is
Local Search. For Simulated Annealing, we show results for convergence
thresholds of 200, 500, and 1,000 generations. For the Genetic Algorithm,
we show results for convergence thresholds of 10, 50, and 100 generations,
and for population sizes of 1,000 and 10,000. For Local Search, we show
results for time limits of 10 seconds, 30 seconds and five minutes, on a 12-
core AMD Opteron. MRFy never achieved the global optimum score of
1,781, achieved by SMURF, on this template, except when local search was
given 20 minutes of compute time, in which case it found the global opti-
mum two out of ten times. These results were obtained using MRFy with-
out simulated evolution, and with initial guesses provided by the template-
based model as described in Section 2.3. These results show that local
search outperforms the other search strategies, and presents the tradeoff
between the running time and accuracy of stochastic search.

increments of 10. Each of these placements is an initial guess
for an instance of the stochastic search. Note that this initial
guess model only differs from the template-based initial
guess when ¢ is significantly larger than ¢, and it is designed
to aid in detecting individual homologous regions (possibly
domains) within a query sequence that is not presumed to
contain only a single domain. This is the initial quess method
that we used to generate the results for MRFy?® in Table 4.
Finally, we implemented a model that attempts to unify
the SMURFLite and MRFy approaches. Given a template 7',
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we create a new template, 77, exactly as in [15], from which
we have removed any g-strand pairs that exceed an inter-
leave threshold of 2 (that is, any pairs that have more than
two other g-strands between them in sequence). We then run
SMURFLite on 7", to create an alignment «’. Note that ¢’ is an
optimal solution to the template 7". We wish to use a’ as an
initial guess for MRFy, but we must first add in the g-strands
that were removed. In order to do so, we greedily move the
placement of each g-strand in @’ as needed to make room for
those other g-strands. The resulting alignment a becomes the ini-
tial guess for MRFy. This is the initial guess method that we used to
generate the results for MRFy* in Table 4.

Since we do not know how to determine when a stochastic
search process has found a global optimum (as opposed to a
good local optimum), we must also have some termination
criterion for the search. We implemented three alternative
termination criteria. The first is a simple generation-counting
approach, where the search terminates after a user-specified
number of generations. The second is a time-based approach,
where the search terminates after a user-specified amount of
time has elapsed. Finally, a convergence model terminates
after the search has failed to improve after a user-specified
number of generations.

In practice, these criteria are easily combined, with a con-
vergence approach often halting searches early with good
results, while the generation- or time-based limit ensures
that the search does not take longer than a user is willing to
wait. We test different termination conditions in Tables 1, 2, and
3, the results in Table 4 and Fig. 5 are all generated with a fixed 30
second time limit.

We next describe the alternative heuristics that MRFy
implements for stochastic search: simulated annealing, a
genetic algorithm, and a local search strategy.

2.3.1 Simulated Annealing

Simulated annealing [23] is a heuristic for stochastic search,
inspired by the physical process of annealing in metals.
Whereas a simple hill-climbing approach will always

TABLE 2
Stochastic Search Performance on “Barwin-Like” g-Barrel
Min Score Mean Score Std Score Mean Time (s) Optimal
SA 200 1,064 1,071 3.8 79.5 0
SA 500 1,047 1,063 7.6 104 0
SA 1000 1,024 1,047 14.0 523 0
GA 1000/10 1,061 1,069 3.6 232 0
GA 1000/50 1,059 1,066 3.1 442 0
GA 1000/100 1,058 1,069 4.0 1,382 0
GA 10000/10 1,058 1,063 2.5 8,205 0
GA 10000/50 1,059 1,061 2.2 10,306 0
GA 10000/100 1,057 1,061 2.2 16,395 0
LS10s 978 995 16.2 10 0.1
LS30s 978 987 6.9 30 0.2
LS5m 978 981 2.9 300 0.4

Performance of stochastic search techniques on the “Barwin-like endoglucanases” -barrel template. SA is Simulated Annealing, GA is
Genetic Algorithm, and LS is Local Search. For Simulated Annealing, we show results for convergence thresholds of 200, 500, and 1,000
generations. For the Genetic Algorithm, we show results for convergence thresholds of 10, 50, and 100 generations, and for population
sizes of 1,000 and 10,000. For Local Search, we show results for time limits of 10 seconds, 30 seconds and five minutes, on a 12-core
AMD Opteron. The “Optimal” column indicates the fraction of runs for each search method that achieved the global optimum. These
results were obtained using MRFy without simulated evolution, and with initial guesses provided by the template-based model as
described in Section 2.3. These results show that local search outperforms the other search strategies, and presents the tradeoff between

the running time and accuracy of stochastic search.
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TABLE 3
Stochastic Search Performance on g-Sandwich
Min Score Mean Score Std Score Mean Time (s) Optimal
SA 200 795 834 18.6 84.7 0
SA 500 790 820 17.3 192 0
SA 1000 791 811 14.7 493 0
GA 1000/10 874 888 4.1 1,869 0
GA 1000/50 878 883 2.5 1,305 0
GA 1000/100 865 878 5.6 4,309 0
GA 10000/10 872 877 2.5 6,999 0
GA 10000/50 875 879 3.1 5,317 0
GA 10000/100 869 875 4.5 10,733 0
LS10s 771 826 31.7 10 0
LS30s 740 791 47.0 30 0
LS5m 554 554 0.0 300 1.0

Performance of stochastic search techniques on a “Concanavalin A-like lectins/glucanases”, a 12-stranded B-sandwich template. SA
is Simulated Annealing, GA is Genetic Algorithm, and LS is Local Search. For Simulated Annealing, we show results for conver-
gence thresholds of 200, 500, and 1,000 generations. For the Genetic Algorithm, we show results for convergence thresholds of 10,
50, and 100 generations, and for population sizes of 1,000 and 10,000. For Local Search, we show results for time limits of 10 sec-
onds, 30 seconds and five minutes, on a 12-core AMD Opteron. The “Optimal” column indicates the fraction of runs for each
search method that achieved the global optimum. These results were obtained using MRFy without simulated evolution, and with
initial guesses provided by the template-based model as described in Section 2.3. These results show that local search outperforms
the other search strategies, and presents the tradeoff between the running time and accuracy of stochastic search.

terminate at the first local optimum encountered, simulated
annealing introduces an acceptance probability function

P(ee’T):{l’ ife <e
o exp(—(¢' —e)/T),
where e = F(s)

e = EB(s)

otherwise

which relies on some energy function E(s) of the current
state s and a candidate state s, and a temperature function
T that tends towards zero as the search progresses. In our
implementation, we used an exponentially-decaying tem-
perature function

given time ¢, initial temperature 7j, and a constant k. The
motivation for this decaying temperature function is that, as
time progresses, the likelihood of being in a poor local opti-
mum lessens, and thus, the closer to random hill-climbing
we would like the search to behave.

Our energy function E(s) is, naturally, the augmented
Viterbi score of a placement

E(s) =V, (n),

where m is the final residue in the query sequence and n is
the final node in the Markov random field, and the g-strand
placements are determined by s.

We implemented simulated annealing in MRFy according

T(t) =k xTp to this model. We also implemented a multi-start version of
TABLE 4
AUC on Beta-Barrel Superfamilies
HMMER RAPTOR HHPred RaptorX CNFPred SMURFLite MRFy! MRFy? MRFy® MRFy*

MRFy performs best
Translation proteins - - 0.66 0.68 0.68 0.93 0.95 0.91 0.95 0.95
Barwin-like endoglucanases - - 0.75 0.79 0.79 0.77 0.86 0.92 093 0.94
Tudor/PWWP/MBT 0.78 0.74 0.67 0.83 0.83 0.83 0.86 0.86 0.86 0.86
Nucleic acid-binding proteins 0.75 - 0.67 0.66 0.66 0.92 0.75 0.95 095 0.95
Cyclophilin-like 0.67 0.61 0.7 0.68 0.68 0.85 0.82 0.80 0.85 0.85
Sm-like ribonucleoproteins 0.73 0.71 0.77 0.75 0.75 0.85 0.77 0.77 0.85 0.87
Prokaryotic SH3-related domain 0.81 - - - - 0.83 0.73 0.72 0.84 0.84
HHPred performs best
Translation proteins SH3-like 0.83 0.81 0.86 0.71 0.71 0.62 - 0.63 0.63 0.63
CNFPred performs best
PDZ domain-like 0.96 1.0 0.99 1.0 1.0 0.97 0.95 0.95 096 0.96
FMN-binding split barrel 0.62 0.82 0.61 0.93 0.93 - - - - -
HMMER performs best
Electron Transport accessory proteins  0.84 - 0.77 - - 0.66 - 0.68 0.68 0.68

Note: For SMURFLite, value indicated is the best of all values from [15]. Note that RaptorX and CNFPred produced identical AUC scores. MRFy results were
using local search with a time limit of 30 seconds. MRFy legend: [1]: MRFy without simulated evolution, with initial guess provided by the template-based model
as described in Section 2.3. [2]: MRFy with simulated evolution, and initial guess provided by the template-based model. [3]: MRFy with simulated evolution and
initial Quess provided by the multi-scaled template-based model. [4]: MRFy with simulated evolution and initial Quess provided by SMURFLite. A dash (*-') ina
result entry indicates the method failed on these structures, i.e. an AUC of less than 0.6.
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Fig. 2. The crossover and mutation process in MRFy’s genetic algorithm
implementation. Given parent p (black) and parent ¢ (gray), alternate left
and right placements from p and ¢. Then, apply small random mutations
to the resulting placement p'.

simulated annealing in MRFy, where a set of independently-
generated guesses is subject to simulated-annealing random
descent, in parallel. At the termination of the search, the best
solution from among all the candidates is chosen.

2.3.2 Genetic Algorithm

A genetic algorithm [26] relies on the idea of selection among a
population of varied solutions to an optimization problem.
At each of many generations, the fitter individuals in the pop-
ulation—those solutions which exhibit more optimal
scores—are allowed to continue into the next generation. Not
only do they continue into the next generation, but they are
allowed to “reproduce,” or recombine, to produce new solu-
tions. A particular solution to a problem, within the context
of a genetic algorithm, is called a chromosome. At each genera-
tion, some fraction of the fittest solutions are selected and
randomly paired with one another. Each pair of solutions
produces one or more offspring; each offspring is the result
of two steps: crossover of the two chromosomes, followed by
random mutation of the offspring. The mutation is nondeter-
ministic; the crossover may be deterministic or nondetermin-
istic. The resulting offspring, along with their parents, are
then evaluated according to the objective function, and this
process iterates until some termination condition.

MRFy’s genetic algorithm implementation uses the same
representation for a placement as simulated annealing: an
ordered list of integers.

Let a placement p on a model with k g-strands be an
ordered set of integers p;,i € (1..k). Given two placements,
p and ¢, MRFy implements crossover of two chromosomes
using the following algorithm:

1)  Set the new placement, p/, to the empty set.
1)  Repeat until all placements have been chosen:
a) Set the position for pj, to py
b)  Set the position for pj, to g
o) Remove py, pi, qo, and g,
d) Adjust indices so p and ¢ now range from what
had been 1 to k — 1.

Our actual implementation is purely functional, and sim-
ply consumes elements from lists. In effect, though, this algo-
rithm simply chooses the ‘left-most’ elements from one
parent and the ‘right-most’ elements from another. After
crossover, the mutation step simply moves each element p; of
the placement p by a small, random amount, within the con-
straints imposed by the neighboring (in terms of sequence)
p-strands. The motivation behind this approach is to take
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1,17,24,31,47,56

24,31,47
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Fig. 3. The diversification step in local search. In this example, g-strand
placements in the middle of the query sequence, corresponding to resi-
due positions 24, 31, and 47, are varied at random within the bounds of
the surrounding placements (corresponding to residue positions 17 and
56) in order to explore a diverse areas of the search space from a locally
optimum solution.

two solutions that are of high fitness (recall that the worst sol-
utions at every generation are not allowed to contribute to the
next generation), and produce a new solution that combines
one “half” (roughly) of one solution with one “half” of the
other. See Fig. 2 for an illustration of this procedure.

Given these operations for crossover and mutation,
MRFy’s genetic algorithm implementation initializes a popu-
lation of a user-specified size P (typically one thousand
placements, though we experimented with as many as ten
thousand). In parallel, each placement is scored according to
the objective function. Since scoring is far more computation-
ally expensive than crossover and mutation, we allow them
all to reproduce, paired at random. We then score them, and
choose the P best-scoring placements for the next generation.
This process repeats until a termination condition is met, at
which point the single best placement is returned. We note
that a future enhancement to MRFy could return the & best
placements for some user-specified threshold k, if multiple
high-scoring alignments were to be considered.

2.3.3 Local Search

Constraint-based local search [27] is a family of approaches
for exploring “neighborhoods” in feature space in a ran-
domized manner, subject to the constraints of that solution
space. In the context of MRFy, the constraints are the
previously-discussed restrictions that p-strands cannot
overlap, and every residue must be placed in a g-strand.
Given a single candidate solution, local search explores the
immediate neighborhood in great detail (perhaps, but not
necessarily exhaustively). When the local search cannot
escape a local optimum, then some sort of non-local move
may be attempted.

This non-local move may rely on a population-based
diversification approach, in which parts of the solution may
change dramatically. In a sense, local search bears some
resemblance to a genetic algorithm, except that a population
of solutions is created only when the search is stuck in a
local optima, and the best solution in that population is cho-
sen for a new search.

In MRFy’s implementation, each step in the search con-
sists of two phases: diversification (See Fig. 3) and intensifica-
tion. The diversification algorithm is as follows: Begin with
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a candidate solution s (a placement), which is just an
ordered list of integers. Given s, break the list into three
sub-lists sg, s1, s2, at randomly-chosen boundaries. Choose
one of the sub-lists s; at random, and mutate it into k& copies
s;1 through s;; at random, for some user-defined value of k&
(we used k = 10), within the constraints imposed by the
other sub-lists and the lengths of the g-strands. Re-combine
each set of lists, (sij,s2j,53;) into a new placement
8}, J € {1..k}. Score each placement s/, return the best-scor-
ing of the k new placements as a new solution.

Once diversification produces a new candidate solution,
intensification brings it toward a local maximum. The inten-
sification algorithm is as follows: Begin with a candidate
solution s. Until no better-scoring placements are generated,
repeat the following steps: For each element e € s, generate
four new placements s, through s, by moving e up and
down by 1 and 2, as long as those moves do not violate the
constraints. Next, score each candidate placement s;;. Finally,
set s to the best-scoring candidate placement s};. Upon termi-
nation, return s as a new solution. Based on the comparative
results of different stochastic search methods in Tables 1,2, and 3,
we used local search to generate all MRFy results in Table 4 and
Fig.5.

2.4 Evaluating Search Strategies

As MRFy supports three significantly different stochastic
search strategies, and a number of tunable parameters such
as termination conditions and (for simulated annealing) the
cooling schedule, we conducted a search over parameter
space using a small data set. We built Markov random field
templates from the fold “eight-bladed Beta-Propellers”, and
the superfamilies “Barwin-like endoglucanases” (a p-barrel
superfamily) and “Concanavalin A-like lectins/glucanases”
(a pB-sandwich superfamily). We were interested in the
speed of convergence for a true-positive test case, so we
tested each template with a protein sequence chosen from
that fold or superfamily: for the 8-bladed propeller, we
chose ASTRAL chain dllrwa_ (Methanol dehydrogenase,
heavy chain from Paracoccus denitrificans). For the barwin-
like endoglucanases, we chose ASTRAL chain d2pical
(Membrane-bound lytic murein transglycosylase A, MLTA
from E. coli). For the lectins/glucanases, we chose ASTRAL
chain d2sbaa_ (Legume lectin from soy bean (Glycine max)).

We tested simulated annealing with a population size
of 10, a maximum number of generations of 10000, con-
vergence periods of 200, 500, and 1,000 generations, and
a cooling factor of 0.99 (preliminary tests showed little
impact from varying the cooling factor among 0.9, 0.99,
and 0.999).

We tested the genetic algorithm implementation with
a population size of 1,000 and 10,000, a maximum num-
ber of generations of 500, and convergence periods of 10,
50, and 100.

Since the local search distinguishes between diversifica-
tion and intensification, counting the number of generations
is ambiguous; we used a time limit of 10 seconds, 30 sec-
onds and 5 minutes. All tests were conducted on a 12-core
AMD Opteron 2427 with 32 GB RAM, devoting all 12 cores
to MRFy. For each test, we report statistics based on 10 runs
for each set of parameters.

2.5 Simulated Evolution

In MRFy, we incorporated precisely the same “simulated
evolution” implementation, as first proposed by Kumar and
Cowen [16], [17], as we did for SMURFLite in [15]. We
added pairwise mutations based on p-strand pairings. We
use the same mutation frequencies as in [15]. For each train-
ing sequence, we generate 150 new artificial training
sequences. For each of these artificial sequences, we mutate
at a 50 percent mutation rate per length of the g-strands.
The goal of this approach is to partially compensate for lim-
ited training data, particularly in superfamilies that contain
relatively few distinct sequences.

2.6 Datasets

From SCOP ([28]) version 1.75, we chose the same S-barrel
superfamiles as [15]. These superfamilies were: “Nucleic
acid-binding proteins” (50249), “Translation proteins”
(50447), “Barwin-like endoglucanases” (50685), “Cyclophilin-
like” (50891), “Sm-like ribonucleoproteins” (50182), “PDZ
domain-like” (50156), “Prokaryotic SH3-related domain”
(82057), “Tudor/PWWP/MBT” (63748), “Electron Transport
accessory proteins” (50090), “Translation proteins SH3-like
domain” (50104), and “FMN-binding split barrel” (50475).

2.7 Training and Testing Process

For the g-barrel superfamilies, we performed strict leave-
family-out cross-validation. We built training templates at
the superfamily level. For each superfamily, its constituent
families were identified. Each family was left out, and a
training set was established from the protein chains in the
remaining families, with duplicate sequences removed. We
built an MRF on the training set, both with and without
training-data augmentation using the same “simulated
evolution” implementation as [15]. We chose protein chains
from the left-out family as positive test examples. Negative
test examples were protein chains from all other superfami-
lies in SCOP classes 1, 2, 3 and 4 (including other barrel
superfamilies), indicated as representatives from the nr-
PDB ([29]) database with non-redundancy set to a BLAST E-
value of 1077".

We used MRFy’s local search mode (see Section 2.3.3)
to align each test example to the trained MRF. The score
reported for MRFy was the combined HMM and pair-
wise score from the MRF, which is identical to the
SMUREF energy function. For each training set, the scores
for both methods (MRFy with and without simulated
evolution) were collected and a ROC curve (a plot of
true positive rate versus false positive rate) computed.
We report the area under the curve (AUC statistic) from
this ROC curve [30].

3 RESULTS

3.1 Search Strategies

For the three stochastic search approaches, we compared
the raw score achieved by each approach under a variety of
conditions, as discussed in Section 2.4. The raw score is sim-
ply the negative log of the probability of the best path found
through the model. Thus, raw scores are not comparable
between models, but they are comparable between query
sequences for a given model.
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We explored the different MRFy stochastic search
options in depth on three structures: the eight-bladed pro-
pellers, the Barwin-like endoglucanase g-barrel superfam-
ily, and the Concanavalin A-like lectins/glucanases. We
chose these three structures in part because they are struc-
tures on which computing the global optimum score, while
slow, is actually tractable. For the eight-bladed propeller
fold, SMUREF itself returns the best-scoring alignment. The
Barwin-like endoglucanase p-barrel superfamily has an
unusually low interleave number for a beta-barrel super-
family, namely an interleave number of 4. While SMUR-
FLite is never recommended to be run with an interleave
number greater than 2, it is sometimes tractable (though
very slow) when run with an interleave threshold of 4, and
when it is run with an interleave threshold with 4 on a
structure with a maximum interleave number of 4, it returns
the global optimum (though for this structure this requires
10 minutes per alignment on a high-end server). The Conca-
navalin A-like lectins/glucanases superfamily has too great
a maximum interleave number for SMURFLite to be
tractable when set to run on the entire MRF, but because of
the relatively small number of p-strands, we were able
to exhaustively enumerate every possible placement of
p-strands, and thus check every possible alignment to
achieve the globally optimal score.

Table 1 indicates the performance of different stochastic
search techniques on the eight-bladed p-propeller fold,
using the template-based model for initial guesses described
in Section 2.3. While the simulated annealing and genetic
algorithm approaches exhibit less variance (a smaller stan-
dard deviation) from run to run, they do not approach the
minimum score of the local search approaches. Multi-start
simulated annealing with a population of 10 and a conver-
gence threshold of 200 generations averages 29.3 seconds
per search, but only achieves a minimum score of 2,112, in
contrast to a global optimum of 1,781, a ratio of 0.843,
though it converged in all cases.

In contrast, local search, given 30 seconds, achieves a
minimum score of 1,982 (a ratio of 0.899), and even in only
10 seconds achieves a minimum score of 1,992 (a ratio of
0.894). However, the global minimum score of 1,781, which
is achieved by SMURF on the 8-bladed g-propeller tem-
plate, is only reached by MRFy with local search two out of
ten times, and this result required local search be allowed to
run for twenty minutes. Thus, for this problem domain,
local search seems to outperform our simulated annealing
and genetic algorithm implementations.

Table 2 indicates the performance of the stochastic search
techniques on the “Barwin-like endoglucanases” p-barrel
superfamily, again using the template-based model for ini-
tial guesses. These structures are less complex than the pro-
pellers, even though they are more computationally
complex for SMURFLite [15] if an interleave threshold
greater than 2 is used. We see less variance than with the
propellers, but once again, the local search technique
achieves a lower minimum score than simulated annealing
or the genetic algorithm.

Notably, local search achieves a minimum score of 978,
which a SMURF alignment indicates to be a global mini-
mum for this sequence on this template. With a time limit of
10 seconds, local search found this global minimum in one

JANUARY/FEBRUARY 2015

7 —_
6 H i
5 ] H
4]
34
2. i
1
0 ;mmmmm
10 20 30 40 50
Cores used

Speedup

Fig. 4. MRFy’s parallel speedup on an eight-bladed g-propeller, using a
48-core system. After about 12 cores, speedup falls off.

out of 10 runs. With a time limit of 30 seconds, local search
found it in two out of ten runs, and with a time limit of
5 minutes, in four out of 10 runs.

Table 3 indicates the performance of the stochastic search
techniques on the “Concanavalin A-like lectins/glucanases”
p-sandwich superfamily. These structures are also more
complex than the propellers, even though they are also
more computationally complex for SMURFLite with an
interleave threshold greater than 2. On this superfamily,
there is a closer overlap between the minimum score
achieved by simulated annealing, at 790 (a ratio of 0.701
compared to the global minimum), and the range seen by
local search; local search with a time limit of 30 seconds
achieves a mean minimum score of 791 (a ratio of 0.700),
though its best was 740 (a ratio of 0.748).

Notably, when given a time limit of 5 minutes, local
search achieved the global minimum of 554 (as determined
by exhaustive search) 10 out of 10 times. Local search never
found this score when given only 10 seconds or 30 seconds
as a time limit.

Our Haskell implementation made it exceedingly easy to
parallelize MRFy across multiple processing cores. By
default, MRFy will take advantage of all processing cores
on a system; we tested the parallel speedup on a system
with 48 processing cores. We measured the run-time perfor-
mance of MRFy’s genetic algorithm implementation (with a
fixed random seed) on the “8-bladed g-propeller” template.
The model has 343 nodes, of which 178 appear in 40
p-strands. The segments between p-strands typically have
at most 10 nodes. We used a query sequence of 592 amino
acids, but each placement breaks the sequence into 41
pieces, each of which typically has at most 20 amino acids.
Because MRFy can solve the models between the g-strands
independently, this benchmark has a lot of parallelism.

Fig. 4 shows speedups when using from 1 to 48 of the
cores on a 48-core, 2.3 GHz AMD Opteron 6176 system.
Errors are estimated from five runs. After about 12 cores,
where MRFy runs six times as fast as sequential code,
speedup rolls off. We note that by running four instances of
MRFy in parallel on different searches, we would expect to
be able to use all 48 cores with about 50 percent efficiency.
All three stochastic search approaches demonstrate compa-
rable parallel efficiency; parallelism is achieved both at the
population level (in which individual candidate solutions
are scored in parallel) and at the solution level (in which the
Viterbi score for each independent hidden Markov model,
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separated by B-strand placements, is scored in parallel).
Thus, we would anticipate somewhat better parallel effi-
ciency with a larger number of g-strands, and worse parallel
efficiency with few p-strands. It is also worth noting that
these experiments were confined to a departmental comput-
ing server; while we applied best practices to ensure the sig-
nificance of these results, they should not be taken to
represent an optimally-configured computer system. Better
parallel efficiency might be obtained with a different choice
of operating system kernel and memory configuration.

Based on our results described above, we decided to
have MRFy default to local search, with a time limit of
30 seconds. We further explore MRFy’s performance with
and without simulated evolution, and with initial guesses
derived from SMURFLite.

3.2 Remote Homology Detection Accuracy

We compared MRFy using local search and a 30-second time
limit, against HMMER [2], Raptor [18], HHPred [21], Rap-
torX [19], and CNFPred [20]. We performed cross-validation
testing on 11 B-barrel superfamilies, both with and without
simulated evolution. For MRFy, the balance between accu-
racy and computational efficiency is determined by the ter-
mination conditions, as well as the search technique chosen.
Because local search so dramatically outperformed simu-
lated annealing and the genetic algorithm at obtaining bet-
ter-scoring alignments, we conducted these cross-validation
tests only on local search, using a simple time limit as a termi-
nation condition. We chose 30 seconds as a balance between
speed and accuracy; a 5 minute time limit might result in bet-
ter accuracy, but for high-throughput, whole-genome scans,
5 minutes per alignment is excessive.

We compared MRFy’s performance, both with and with-
out simulated evolution, to the results from [15], for exactly
the same set of 11 SCOP pg-barrel superfamilies that were
considered. Table 4 shows the area (AUC) under the
Receiver Operator Characteristic (ROC) curve for MRFy,
the very best result from SMURFLite, and HMMER, RAP-
TOR, HHPred, RaptorX (specifically, BoostThreader), and
CNFPred. Importantly, we are choosing the best SMUR-
FLite parameters for each superfamily, which could not be
known in advance; thus, we demonstrate improvements
over the very best SMURFLite can perform, rather than just
an average case.

We first note for the “Barwin-like endoglucanases”
superfamily highlighted in [15], SMURFLite performed bet-
ter as the interleave threshold was increased on this super-
family. Since MRFy discards no g-strands, we were curious
how it would perform on this superfamily. Notably, this
superfamily has exceedingly little training data; during
cross-validation, there are at most four training sequences
and as few as three when filtered at a BLAST E-value of
1077 and the family under test is left out. Without simulated
evolution, MRFy achieves an AUC of 0.86, outperforming
SMURFLite without simulated evolution (SMURFLite
achieved an AUC of 0.77 with an interleave threshold of 2,
and 0.81 with an interleave threshold of 4). When simulated
evolution is added, MRFy achieves an AUC of 0.92, outper-
forming SMURFLite with an interleave threshold of 2, but
falling just short of the 0.94 AUC SMURFLite demonstrates
with an interleave threshold of 4 and simulated evolution.

Nucleic acid-binding Proteins
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Fig. 5. ROC curves and AUC statistic for the “Nucleic acid-binding
proteins” superfamily. For this analysis, MRFy was run using the options
corresponding to “MRFy3” in Table 4; namely, local search with a time
limit of 30 seconds, and multi-scaled template-based initial guesses.

We note that the running time required for SMURFLite
with an interleave threshold of 4 was roughly 10 minutes;
MRFy required only 30 seconds to achieve comparable
results. The run-time cost of using SMURFLite to produce
initial guesses for MRFy is less than 2 seconds; this initial
guess does not take advantage of multiple cores, however.

Without using SMURFLite to provide an initial guess,
and instead using the template-based model as described in
Section 2.3, MRFy outperforms SMURFLite in terms of
AUC on four of the g-barrel superfamilies, while SMUR-
FLite outperforms MRFy on three. With SMURFLite initial
guesses, MRFy outperformed SMURFLite on all but one
superfamily. In particular, we note improvement on the
“Nucleic acid-binding proteins” superfamily; see Fig. 5 for
the results of ROC analysis. In general, MRFy improved the
performance on the superfamilies on which SMURFLite
performed well, though it did not improve the performance
on those superfamilies for which SMURFLite had not per-
formed well in our previous work. Thus, with the exception
of the “Barwin-like endoglucanase” superfamily, the added
p-strand information does not seem to help MRFy signifi-
cantly in the cases where HMMER, RAPTOR, CNFPred, or
HHPred performed best.

3.3 Alignment Quality

MRFy, like SMURFLite [15] and HMMER [2], aligns a query
sequence to a template that was itself produced from a mul-
tiple structure alignment. Beyond using MRFy’s alignment
score for homology detection, one might consider how well
this alignment to a structural template matches the align-
ment that would result from structurally aligning the query
protein to the structural template. We compared MRFy
using local search and a 90-second time limit against
HMMER and SMURFLite on the same 11 g-barrel superfa-
milies as in the previous section. For each superfamily, we
left out each of its families in turn, and for each structure in
the family left out, we used Matt [31] to re-align that struc-
ture to the structural alignment built from the remaining
families in the superfamily. For MRFy, SMURFLite, and
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TABLE 5
Alignment Quality on Beta-Barrel Superfamilies
HMMER SMURFLite MRFy! MRFy? MRFy? MRFy!
Translation proteins 46 72 70 71 73 73
Barwin-like endoglucanases 53 58 63 65 64 63
Tudor/PWWP/MBT 64 67 66 68 67 67
Nucleic acid-binding proteins 63 71 73 75 75 74
Cyclophilin-like 47 62 64 63 66 65
Sm-like ribonucleoproteins 63 61 67 65 68 68
Prokaryotic SH3-related domain 71 73 72 74 75 75
Translation proteins SH3-like 62 51 56 51 50 52
PDZ domain-like 83 81 80 81 84 84
FMN-binding split barrel 41 43 44 46 44 44
Electron Transport accessory proteins 59 48 46 44 47 46

Results shown are the percentage of columns in the alignment that are correct with respect to a purely structural alignment performed using Matt.
MRFy results were using local search with a time limit of 30 seconds. MRFy legend: [1]: MRFy without simulated evolution, with initial guess pro-
vided by the template-based model as described in Section 2.3. [2]: MRFy with simulated evolution, and initial guess provided by the template-based
model. [3]: MRFy with simulated evolution and initial guess provided by the multi-scaled template-based model. [4]: MRFy with simulated evolution

and initial guess provided by SMURFLite.

HMMER, we then aligned the sequence of each left-out pro-
tein to the trained model built from that same superfamily
structural alignment. For each such alignment, we counted
the number of columns in which the MRFy, SMURFLite, or
HMMER alignment was in agreement with the Matt struc-
tural alignment. We present the mean of this percentage of
correct columns for each p-barrel superfamily in Table 5.

We note that a direct alignment-quality comparison to
RAPTOR, HHPred, and RaptorX is not meaningful, as these
other tools do not align a single query sequence to a tem-
plate derived from a multiple alignment.

In a majority (6 of 11 superfamilies), MRFy with simu-
lated evolution and an initial guess provided by the multi-
scaled template-based model performed best, and its align-
ment was always strictly better than SMURFLite’s. This is
unsurprising, because MRFy can consider p-strands that
SMURFLite cannot.

4 DISCUSSION

We have presented MRFy, a method that finds alignments
of protein sequences to Markov random field models using
stochastic search. MRFy outperforms SMURFLite in most
cases, both in terms of homology detection performance
and alignment accuracy, but we should consider several
possible enhancements to MRFy that might improve its per-
formance. As demonstrated on the g-sandwich superfamily,
MRFy with local search achieves a globally optimal align-
ment when given 5 minutes of run-time, but fails to find a
score close to this when given only 30 seconds. It was not
immediately clear how to bring convergence testing into the
local search model, but doing so might achieve results com-
parable to the 5 minute results in less time.

Due to differing cost models, running-time comparisons
with the other tools we tested are difficult. For example,
RaptorX and CNFPred both rely on a PSI-BLAST search,
which can easily take 15 minutes on a 48-core server. How-
ever, the results of this PSI-BLAST search are specific to a
query sequence, not to a threading template, and so this
running time could be amortized over all the templates to
which a query was to be aligned. The alignment phase of a
RaptorX or CNFPred query to a single template takes 1-2

seconds on a 48-core server. In contrast, a single HMMER
alignment requires less than 1 second, even though it does
not take advantage of multiple cores. HHPred does not
align a query to a particular template, but rather aligns a
sequence profile or hidden Markov model to each of a set of
Pfam databases; such a search typically requires less than
1 second per alignment, but as with RaptorX and CNFPred,
the time required to build a sequence profile from a query
sequence dominates the overall running time.

It is also worth noting that unlike MRFy, all the other
tools in our comparison are computing an exact solution to
some problem; MRFy can benefit from additional running
time to find a better local optimum with higher probability.
In contrast, SMURFLite always computes the optimal solu-
tion to a problem whose complexity can be varied based on
the g-strand topology, and HMMER's run-time complexity
is always linear in the product of the length of the model
and the length of the query sequence.

As we saw with SMURFLite [15], MRFy would be at a dis-
advantage on superfamilies that contained very few homolo-
gous proteins. However, as with SMURFLite, the inclusion of
“simulated evolution” somewhat mitigates this concern.

We hope that MRFy will be useful for whole-genome
annotation of newly-sequenced organisms. The tradeoff of
time versus accuracy suggests a two-phase approach to this
task: a scan with relatively strict run-time performance
requirements (perhaps no more than ten seconds per align-
ment) coupled with a relatively loose p-value threshold
would produce a number of candidates, many of which
would likely be false positives. Then, MRFy could be re-run
on these candidates with more computationally demanding
settings, and with a more strict p-value threshold. MRFy
computes p-values identically to SMURFLite: an extreme
value distribution [2] is fitted to a distribution of raw scores,
and then a p-value is computed as 1 — cdf(z) for any raw
MRFy score x. Computing the p-value accurately in the face
of different search intensities might require fitting multiple
distributions, each for a different level of search intensity.
Otherwise, if the distribution is obtained with an intensive
search, then at less-intensive search parameters, true posi-
tives may result in poor p-values; similarly, if the distribu-
tion is obtained with a quick search, then more-intensive
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search parameters might result in false positives scoring
comparatively well, and appearing to have good p-values.

As in [15], we compared MRFy to HHPred [21]. As dis-
cussed, HHPred has an advantage in that it builds profiles
based on all of protein sequence space. As a future enhance-
ment to MRFy, we plan to introduce query profiles, so that
the MRFy alignment is to a sequence profile built from the
query sequence, rather than just the query sequence. How-
ever, this will introduce a run-time performance hit in two
ways. First, the time to run a sequence homology search
using the BLAST [32] family of tools can be significant,
though the work on compressively-accelerated algorithms
by Loh et al. [33] and Daniels et al. [34] may reduce this
impact. Second, computing the Viterbi and g-pairing scores
naively will require time directly proportional to the num-
ber of sequences in the query profile. Representing these
query sequences as sets of residue frequency vectors should
help; there may be other approaches to consider as well.

One limitation of MRFy’s approach is that the training
phase requires a template to be built from a set of structur-
ally consistent protein chains. However, above the super-
family level of SCOP, while some folds are structurally
consistent, particularly the g-propellers [1], other folds do
not align well structurally [35]. We see this even in superfa-
milies whose alignments do not preserve consensus
p-strands; as pointed out in [35], the “Translation Proteins
SH3-Like Domain,” in which HMMER and HHPred both
outperform MRFy, has four g-strands, but the consensus
alignment preserves none of them, eliminating any advan-
tage from the Markov random field.

In order to use MRFy to predict homologs to sets of pro-
tein structures that do not align well, it may be useful to sepa-
rate these superfamilies or folds into more easily-aligned
subsets. Additionally, it is not clear for every fold that all con-
stituent superfamilies are homologous, so the task of identi-
fying homologous proteins from different superfamilies but
the same fold is more difficult in general. This suggests fur-
ther investigation into modifying the MRFy approach to be
more effective in the detection of truly remote homologs.

Thus far, only p-strand interactions lead to non-local
interactions in the MRFy Markov random field. In the
future, we will investigate fitting other secondary structural
elements (the a-helices) into this model. Currently, a-helix
residues are treated like any other residue; while some of
the p-barrel superfamilies on which MRFy performs well do
include a-helices, they are not modeled structurally or iden-
tified in the alignment. In addition, disulfide bonds, which
can occur between cysteine residues and have been shown
to be highly conserved [36], [37], would appear to fit easily
into this model.
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