
Markedly
A cartographic approach for mapping eDSL implementation costs

Matthew P. Ahrens
Tufts University

Medford, Massachusetts, USA
mahrens@cs.tufts.edu

Karl Cronburg
Tufts University

Medford, Massachusetts, USA
karl@cs.tufts.edu

Jeanne-Marie Musca
Tufts University

Medford, Massachusetts, USA
jmusca@cs.tufts.edu

Abstract
The cost of implementing an embedded domain specific lan-
guage (eDSL) depends on the eDSL development tools used
to build it, but these costs are not readily apparent. Markedly
enables developers to map elements of the eDSL implementa-
tion and attach costs to these elements. An implementation
diverging from its design incurs four distinct types of costs:
Preserve, Extend, Adhere, and Recognize.

To illustrate the Markedly approach, we calculate the costs
of example eDSLs using a map for the Haskell language
metaprogramming and host language toolsets. To evaluate
this approach, we will assess how developers reason about
costs while implementing an eDSL.

CCS Concepts • Software and its engineering→ Gen-
eral programming languages; • Social and professional
topics → History of programming languages;

Keywords programming languages, functional languages,
domain specific languages, semantics

ACM Reference Format:
Matthew P. Ahrens, Karl Cronburg, and Jeanne-Marie Musca. 2017.
Markedly: A cartographic approach for mapping eDSL implementa-
tion costs. Presented atWorkshop on Meta-Programming Techniques
and Reflection (Meta’17). 5 pages.

1 Introduction
1.1 The Practice
EDSL developers usingHaskell’s language development toolset
choose between host language constructs and metaprogram-
ming tools when implementing their eDSLs. Host language
constructs provide the eDSL developer direct reuse of the
core Haskell semantics and GHC’s extension constructs such
as generics, type families, and data kinds. Haskell’s metapro-
gramming tools include the Template Haskell Q Monad, alge-
braic data type AST representation, and libraries for parsing
and compile time splicing[8, 10]. For simplicity, developers
prefer to implement their eDSL using only one tool, but some
eDSLs are better implemented by a composition of tools.

This work is licensed under Creative Commons Attribution 4.0 International
License (CC BY 4.0).
Meta’17, October 22, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s).

1.2 The Problem
When a tool requires extraneous effort to implement an eDSL
feature, the implementation incurs an unexpected cost. Costs
are difficult to track across stages of language development
and make comparing the impact of implementation decisions
difficult with respect to the parts of the design those decisions
affect.

1.3 The Solution
EDSL developers will better construct and modify their im-
plementation by:
• Decomposing the design into eDSL features
• Associating features with a tool implementation
• Identifying connections between implementations
• Track costs accumulated across connections

2 Methodology
Given a chosen deconstruction of an eDSL design into fea-
tures, Markedly allows developers to calculate implementa-
tion costs. To illustrate, we apply Markedly techniques to a
toy eDSL for Identifiers with the features:
• identifiers must match the regex [A-Z][a-z0-9]*
• identifiers must be unique in scope

For tracking costs during any stage of development – plan-
ning, constructing, or iterating – Markedly describes an in-
formal algorithm for visualizing an eDSL implementation as
a map.

2.1 Constructing the Map
Using Markedly, an eDSL developer constructs a map with
regions representing language development tools. The devel-
oper marks points on a region when implementing part of
the language in that tool. When planning, developers put one
point per feature on the map and connect points with edges
to represent program dataflow. In practice, developers may
encounter instances where multiple tools may be needed for
one feature, resulting in multiple points and edges. In itera-
tion, developers may add to or modify the implementation,
resulting in adding or moving points and edges.

For example, in Figures 1 and 2, the map partitions regions
for the tools: Haskell semantics and Parsec parsing. The de-
velopers for the Figure 1 implementation mark both features
with one point which represents implementing identifiers

1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Meta’17, October 22, 2017, Vancouver, Canada Ahrens, Cronburg, and Musca

as host language identifiers. In the Figure 2 implementation,
developers mark the regex feature in the parser tool region
as a parser implementation and the uniqueness feature in
the Haskell semantics region as a Haskell set data structure.
To share program data between the features, developers add
an edge from the parser to the set data structure.

2.2 Metrics of cost
To help developers track the impact of their implementation
decisions, Markedly accumulates costs along paths. To help
developers focus on specific concerns of their implemen-
tation decisions, Markedly splits costs along four vectors,
labeled PEAR.

2.2.1 Preserve
The heuristic for the preservation cost of a map element
(points and edges) is How many features in the design are
compromised by this element? An implementation element
compromises a design feature by not enforcing a property
of the design feature. In Figure 1, Haskell identifiers do not
enforce the leading capital property of the regex feature,
incurring a preservation cost of one.

2.2.2 Extend
The heuristic for the extension cost of a map element is How
many intermediate representations are not accessible from this
element? When the implementation of a map element does
not expose transformed program data, then that element
incurs an extension cost for each hidden representation. Sup-
pose the representation of identifiers to check syntax was
introduced and lost during error reporting in Figure 3. The
error reporting point would incur an extension cost of one.

2.2.3 Adhere
The heuristic for the adherence cost of a map element is How
many expressions or syntactic annotations must be written in
addition to simply implementing the feature? Complexity of
the function required to convert between tool representa-
tions informs this metric. For example, in Figure 3, the edge
from the parser to the error correcting point must convert
from the parser’s representation to a string thus incurring
an adherence cost of one against the regex feature.

2.2.4 Recognize
The heuristic for the recognition cost of a map element is Is
this element present in the design? If the element is directly
tied to at least one feature, it has a cost of zero; otherwise it
has a cost of one. In the example in Figure 3, error reporting
does not appear in the design, so the extra points and edges
added to support that feature incur a cost of one, each.

2.3 Calculation and Comparison
A four-tuple of natural numbers represents the cost for a
map element : (P ,E,A,R). A map element is either a point

Haskell Ids

Haskell

Figure 1. Haskell map for a host language embedding of
Identifiers

Parser Set

Parsec Parser Haskell

Figure 2. Haskell map for a metaprogram embedding of
Identifiers

Parser

Print Stx Err

Data.Set

Parsec Parser Haskell

Figure 3. Haskell map for a metaprogram embedding of
Identifiers with error reporting

or an edge. When multiple edges converge on a point, the
path takes the maximum cost for each metric at that point.
In the implementation of Identifiers in Figure 3 which adds
error reporting, the accumulated cost along the parser edge
and syntax edge are (0,0,0,1) and (0,1,0,2), and set edge cost
is (0,0,0,0). Thus, (arдmax (0, 0, 1, 1) (0, 1, 0, 3)) + (0, 0, 0, 0))
calculates the path cost as (0,1,1,3).

Developers can now compare the costs of different imple-
mentations with proper separation of concerns. The Iden-
tifiers eDSL implementations have costs of (1,0,0,0) for the
host language implementation, (0,0,0,1) for the metaprogram
implementation, and (0,1,1,3) for the error handling imple-
mentation. Using these metrics, developers decide which
implementation to maintain depending on what will be dif-
ficult to maintain. Connecting the terminal points of maps
allows developers to compose maps together and track costs
while iterating over their eDSLs.

3 Example eDSLs
3.1 Data Parsing
Consider an eDSL, µPADS [5], whose features are:
• best-effort (longest parse) left-to-right parsing
• first-fit (packrat) parsing

The implementation of (<|>) in Figure 4 takes two parser
results and decides which one progresses. The map in Figure
5 defines the type signature, Nothing case, Both-Just case,

2



Markedly Meta’17, October 22, 2017, Vancouver, Canada

1 (<|>) :: Maybe [t] -> Maybe [t] -> Maybe [t]
2 (<|>) Nothing Nothing = Nothing
3 (<|>) (Just as) (Just bs)
4 | length as <= length bs = Just as
5 | otherwise = Just bs
6 (<|>) (Just as) _ = Just as
7 (<|>) _ (Just bs) = Just bs

Figure 4. Representations of the two µPADS features. Fea-
ture (1) is implemented by lines 4 and 5, and feature (2) is
implemented by lines 4, 6, and 7.

Type Sig

Nothing

Both-Just

One-Just

pm1

pm2

pm3

Haskell

Figure 5. Haskell map for µPADS

TySig P E A R

Nothing 0 0 0 1
Both-Just 0 0 1 1

One-Just 0 0 0 0

pm1 0 0 0 1

pm2 0 0 0 1

pm3 0 0 0 1

TotalPath 0 0 1 5

Figure 6. The non-zero PEAR costs of µPADS

and One-Just case(s) as points and connects them via the
standard Haskell tool of pattern matching (pm).

Line 4 in Figure 4 simply exists to adhere to the implied se-
mantics of first-fit while implementing best-effort, incurring
an adherence cost. The type representation, Nothing failure
case, and evaluation order imposed by pattern matching are
not reflected by features thus incurring a recognition cost.
The design could reduce the PEAR cost to zero by being

more specific:
• best-effort (longest parse) left-to-right parsing pre-
ferred
• first-fit (packrat) parsing if results equivalent or only
one result

Mun

Host MkVal

MkTy ADT

ValEnv

Parsec Parser Q Monad Haskell ADTs

Figure 7. The Haskell map for MunLang

Element P E A R

Host 0 0 1 0
ADT 0 0 0 1

ValEnv 0 0 0 1

MkTyMkVal 0 1 0 1

MkTyADT 0 0 1 1

TyConPath 0 0 2 2

ValConPath 0 1 1 2

Figure 8. The non-zero PEAR costs of MunLang

• propagate failure if no result
• expect computation failure

3.2 Containers
Consider an eDSLMunLang that implements themulti-union
data structure [4] The design of MunLang contains three
features:
• Define a munion type with {: :} operators
• Construct a munion value with {: :} operators
• Splice types and values from host language

To define a munion type, specify a set of label-type pairs:
typeM1 = {: τ1 l1, τ2 l2, τ3 l3 :}. Similarly, to construct munion
values of typeM1, declare a subset of label-value pairs,: V1 =
{: l1 = v1, l3 = v2 :} :: M1

In the map in figure 7, the points mun and host enforce
syntactic constraints for the munion and host language syn-
tax, respectively. MkTy and MkVal points construct munion
types and values, respectively. The ADT point represents
Haskell type splicing and ValEnv represents Haskell value
splicing.
The developers use the heuristics for each PEAR dimen-

sion to calculate the PEAR costs in Figure . From these costs,
the developers document that the implementation “fills in”
the underspecified host language representation apparent in
the recognition cost, contains superfluous code to parse the
host language apparent in the adherence cost, and hides the
type environment apparent in the extension cost.

3.3 Type-Level Naturals
Consider an eDSL, Numeric Type Annotations whose features
are:

3



Meta’17, October 22, 2017, Vancouver, Canada Ahrens, Cronburg, and Musca

data Nat = Z | S Nat
type Weighted (w :: Nat) a = a
type family (w1 :: Nat) :+: (w2 :: Nat) :: Nat
type instance Z :+: m = m
type instance (S n) :+: m = S (n :+: m)
($$) :: Weighted w1 (a -> b) -> Weighted w2 a

-> Weighted (w1 :+: w2) b
($$) f a = f a

Figure 9. The deeply embedded implementation for Type
Level Naturals

Natural ADT

Weighted Type

TyVar :+:

$$
Haskell

Data Kinds Type Family

Figure 10. The Haskell map for Type Level Naturals

Element P E A R

Natural ADT 1 0 0 0
Weighted Type Alias 0 0 1 0

TyVar 0 0 0 1
:+: 0 0 1 0

NatTyVar 0 0 0 1

TyVarWeiдht 0 0 0 1

TyVar : + : 0 0 0 1

ProдPath 1 0 2 3

Figure 11. The non-zero PEAR costs of Type Level Naturals

• readable natural number weight types
• attach weights to arbitrary expressions
• summing weights across function application

A deep embedding represents the eDSL using the Haskell
type system in Figure 9. The map in Figure 10 for this eDSL
contains the regions of data kinds, type families and Haskell
semantics.
In Figure 11, the implementation manifests a connection

between numeric representation and weights incurring a
recognition cost. Because the implementation must thread
the type variable,w :: Nat , elements adding extra type vari-
able annotations in addition to their features incur an ad-
herence cost. The preservation cost occurs from the natural
numbers Peano representation being difficult to read. The

developers may add implementation details which make
use of algebraic numerals, risking adherence costs if adding
complicated parsing and printing expressions.

4 Evaluation
To evaluate our cartographic approach, developers will im-
plement an eDSL in Haskell as part of a user study.

4.1 Given
Support for an overspecified eDSL feature evaluates preser-
vation. The amount of code modified when adding a fea-
ture after initial implementation evaluates extension. The
number of intermediate representations evaluates adherence.
Abstracting the design from the implementation evaluates
recognition.

4.2 Experiment
Half of participating developers will use the Haskell map
that contains the maps from the eDSL examples and the costs
of known paths between regions. Each developer will place
eDSL features on the map and calculate the accumulated
PEAR costs while iterating over their implementation.

5 Current Work and Conclusion
To bridge the gap between developer knowledge and auto-
matic tool support, an artifact of Markedly would provide
an interactive view where:
• A specification language encodes the design
• PEAR costs are automatically calculated
• A library provides common eDSL map elements
• Code templates are generated from a map instance

Language design workbenches associated with edges on
a Markedly map by proving a unified representation for
constructing an eDSL. Developers can apply Markedly to
language design workbench eDSL implementations by rep-
resenting the workbench as a large region on the map and
focusing on the features that require tools outside the work-
bench as points and edges that leave the region.

The realities of implementing an eDSL incur various kinds
of costs dependent on the stage of development. In theMarkedly
approach, we categorize these costs into the four PEAR
metrics. Markedly describes costs for eDSL implementation
tools and our Haskell eDSL examples provide insight into
instances of the approach. A user study would allow us to
determine if the approach and Haskell specific artifacts facil-
itate reasoning about implementation choices with respect
to PEAR costs.

Acknowledgments
Markedly is sponsored by the Defense Advanced Research
Projects Agency (contract: FA8750-15-2-0033).Markedly does
not necessarily reflect the position or the policy of the US
Government, and no official endorsement should be inferred.

4



Markedly Meta’17, October 22, 2017, Vancouver, Canada

References
[1] Walter Cazzola and Albert Shaqiri. 2016. Modularity and Optimiza-

tion in Synergy. In Proceedings of the 15th International Conference on
Modularity (MODULARITY 2016). ACM, New York, NY, USA, 70–81.
https://doi.org/10.1145/2889443.2889445

[2] Walter Cazzola and Ivan Speziale. 2009. Sectional Domain Specific
Languages. In Proceedings of the 4th Workshop on Domain-specific
Aspect Languages (DSAL ’09). ACM, New York, NY, USA, 11–14. https:
//doi.org/10.1145/1509307.1509311

[3] Martin Churchill, Peter D. Mosses, and Paolo Torrini. 2014. Reusable
Components of Semantic Specifications. In Proceedings of the 13th
International Conference on Modularity (MODULARITY ’14). ACM, New
York, NY, USA, 145–156. https://doi.org/10.1145/2577080.2577099

[4] Corinna Cortes, Kathleen Fisher, Daryl Pregibon, Anne Rogers, and
Frederick Smith. 2004. Hancock: A Language for Analyzing Transac-
tional Data Streams. ACM Trans. Program. Lang. Syst. 26, 2 (March
2004), 301–338. https://doi.org/10.1145/973097.973100

[5] Kathleen Fisher and Robert Gruber. 2005. PADS: A Domain-specific
Language for Processing Ad Hoc Data. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI ’05). ACM, New York, NY, USA, 295–304. https:
//doi.org/10.1145/1065010.1065046

[6] Vojin Jovanovic, Amir Shaikhha, Sandro Stucki, Vladimir Nikolaev,
Christoph Koch, and Martin Odersky. 2014. Yin-yang: Conceal-
ing the Deep Embedding of DSLs. In Proceedings of the 2014 Inter-
national Conference on Generative Programming: Concepts and Ex-
periences (GPCE 2014). ACM, New York, NY, USA, 73–82. https:
//doi.org/10.1145/2658761.2658771

[7] Thomas Kühn, Walter Cazzola, and Diego Mathias Olivares. 2015.
Choosy and Picky: Configuration of Language Product Lines. In Pro-
ceedings of the 19th International Conference on Software Product Line
(SPLC ’15). ACM, New York, NY, USA, 71–80. https://doi.org/10.1145/
2791060.2791092

[8] Geoffrey Mainland. 2007. Why It’s Nice to Be Quoted: Quasiquoting
for Haskell. In Proceedings of the ACM SIGPLAN Workshop on Haskell
Workshop (Haskell ’07). ACM, New York, NY, USA, 73–82. https://doi.
org/10.1145/1291201.1291211

[9] Jan Midtgaard, Norman Ramsey, and Bradford Larsen. 2013. Engineer-
ing Definitional Interpreters. In Proceedings of the 15th Symposium on
Principles and Practice of Declarative Programming (PPDP ’13). ACM,
New York, NY, USA, 121–132. https://doi.org/10.1145/2505879.2505894

[10] Tim Sheard and Simon Peyton Jones. 2002. Template Meta-
programming for Haskell. In Proceedings of the 2002 ACM SIGPLAN
Workshop on Haskell (Haskell ’02). ACM, New York, NY, USA, 1–16.
https://doi.org/10.1145/581690.581691

5

https://doi.org/10.1145/2889443.2889445
https://doi.org/10.1145/1509307.1509311
https://doi.org/10.1145/1509307.1509311
https://doi.org/10.1145/2577080.2577099
https://doi.org/10.1145/973097.973100
https://doi.org/10.1145/1065010.1065046
https://doi.org/10.1145/1065010.1065046
https://doi.org/10.1145/2658761.2658771
https://doi.org/10.1145/2658761.2658771
https://doi.org/10.1145/2791060.2791092
https://doi.org/10.1145/2791060.2791092
https://doi.org/10.1145/1291201.1291211
https://doi.org/10.1145/1291201.1291211
https://doi.org/10.1145/2505879.2505894
https://doi.org/10.1145/581690.581691

	Abstract
	1 Introduction
	1.1 The Practice
	1.2 The Problem
	1.3 The Solution

	2 Methodology
	2.1 Constructing the Map
	2.2 Metrics of cost
	2.3 Calculation and Comparison

	3 Example eDSLs
	3.1 Data Parsing
	3.2 Containers
	3.3 Type-Level Naturals

	4 Evaluation
	4.1 Given
	4.2 Experiment

	5 Current Work and Conclusion
	Acknowledgments
	References

